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Abstract 

Singular stress fields around three-dimensional wedges are examined, and the near-tip intensity is calculated via the 
two-state M-integral with the aid of the domain integral representation. A numerical example demonstrates the 
effectiveness and accuracy of the present scheme for computing the stress intensities of singular stresses near the generic 
three-dimensional wedges. 

1. Introduction 

The computation of the near-tip intensities of the 

singular fields may be rather straightforward for the two-

dimensional wedges, and there are many schemes 

available(see Im and Kim[1] and the papers cited therein, 

for examples). The computation of the intensities for 

three-dimensional wedges is much more complicated in 

comparison to those of the aforementioned two-

dimensional ones. There are many researchers that have 

discussed only the order of the stress singularities on 

three-dimensional wedge vertices. However, no 

systematic computational schemes have been reported 

regarding the calculation of the near-tip intensities of the 

singular stress fields around three-dimensional wedges, 

to the best of the author’s knowledge. 

The purpose of the present work is to report on a 

numerical scheme for finding the near-tip intensities 

around three-dimensional wedges with the aid of the 

two-state M-integral. A brief review is given of the 

eigenfunction expansion of the solution for three-

dimensional elastic wedges. The two-state M-integral is 

applied for calculating the near-tip intensity by utilizing 

the complementary relationship for the eigenvalues of 

the three-dimensional wedges in the sense of M-integral.  

For a numerical example, we choose the three-

dimensional bimaterial interface corner, which was 

discussed by Labossiere and Dunn[2].  

 

2. Eigenfunction expansion of the solution 

for three-dimensional elastic wedges 

For the purpose of analysis for stress singularities at 

the vertex, we introduce the eigenfunction expansion 

(see Benthem[3], Ghahremani and Shih[4]) for the 
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elastic solution, which is given in the form of the 

separable displacement field: 

 

)];,(~Re[
2
1

)];,(~Re[
2
1

)];,(~Re[
2
1

1

1

1

nnn

nnn

nnn

wrw

vrv

uru

n

n

n

n

n

n

δφθβ
µ

δφθβ
µ

δφθβ
µ

δ

δ

δ

δ

δ

δ

+

+

+

∑

∑

∑

=

=

=

 (1) 

 

where r, θ and φ are the spherical coordinates with the 

origin at the vertex O, and (u, v, w) are the components 

of displacement in (r, θ, φ) directions, respectively. 

Values of )1( += nn δλ , which are employed for 

convenience of the expression instead of 1+nδ , are 

called the eigenvalues and its corresponding 

eigenfunctions are );,(~ λφθnu , );,(~ λφθnv  and 

);,(~ λφθnw .  

Hence, the stress singularity occurs at the origin 

when 1)Re( <nλ . On the other hand, the strain energy is 

bounded at the origin and this requires 2/1)Re( −>nλ  

(boundedness of strain energy requires 0)Re( >nλ  for 

two-dimensional wedge vertices). However, 0)Re( <nλ  

implies that the displacement fields are unbounded at 

r=0, which is unrealistic except for a concentrated load 

applied at the vertex. Therefore, we are primarily 

interested in eigenvalues )1( += nn δλ  in the range 

1) <nRe(0 < λ . 

Let the stress and strain components in the 

spherical coordinates be represented by 1-D arrays as 

follows: 

 

),,,,,(),,,,,( 654321 θφθφφφθθ σσσσσσσσσσσσ rrrr=  (2a) 

)2,2,2,,,(),,,,,( 654321 θφθφφφθθ εεεεεεεεεεεε rrrr=  (2b) 

 

Material constitutive relationship is then given as 

 

 jiji C εσ =     (3) 

 

where i, j =1~6, and  is the material stiffness which 

satisfies 

ijC

jiij CC = . 

 

3. Application of two-state M-integral for 

3-D wedges 

The M-integral is written as[5]: 

 

∫
−

+−= S iikkiiii dSut
m

nmxutnWxM }{ ,  (3) 

 

where “S” is a closed surface. Note that W and ti indicate 

the strain energy density and the traction components, 

given as 
klijijklC εε

2
1

=W  and t jiji nσ= . Furthermore  

is the displacement component, and m the degree of 

homogeneity of the strain energy density, that is, 2 for 

the linear elastic problem, and n the degree of freedom of 

the spatial dimension, e.g., n is equal to 2 for two-

dimensional domains or to 3 for three-dimensional 

bodies. Thus the M-integral for a three-dimensional 

linear elastic body is rewritten as:  

iu

 

∫ −−=
S iijjiiii dSutxutnWxM }

2
1{ ,   (i, j =1,2,3) 

 

Suppose two independent elastic states, “A” and 

“B”. We consider another elastic state “C” obtained by 

superposing the two equilibrium states “A” and “B”. 

Then the above M-integral is written as  

 

   ),( BABAC MMMM ++=   (4) 

 

where the superscripts “A”, “B” and “C” indicate the 

aforementioned elastic states, and ),( BAM  is the two-

state M-integral, given as : 
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The integral ),( BAM  results from the mutual interaction 

between the two elastic states “A” and “B”. This integral 

is referred to as the two-state M-integral in this context. 

Note that ),( BAM  is the conservation integral for two 

equilibrium states since it identically vanishes for the 

domains with no singularities. 

To explain the application of ),( BAM  for generic 

three-dimensional wedges, we reconsider the conical 

domain in Fig. 1, where each of the two surfaces  

and , having the outward normal vectors, cuts 

through the lateral surface  in an arbitrary manner. 

Recalling that the M-integral is dependent upon the 

origin of the coordinate system (x

IS

IIS

IS +

LS

1, x2, x3), we take its 

origin at the wedge vertex. We take the closed surface 

 where  means the reverse orientation 

of the surface , that is, the same area but with the 

inside the region bounded by these surfaces, we can 

show the path independence of the M-integral as  

LII SS − IS−

IS

 

 

Fig. 1  The integral path for M-integral and two-state 

M-integral for three-dimensional domains. 

 

    )()( III SMSM =    (6) 

   

where M(SL) = 0 and M(- ) = -M( S ) have been used. 

Furthermore, the path or surface independence of the 

two-state M-integral 

IS

),BA

I

(M  is apparent from the above 

and equation (9). That is, we have 

 

   (7) )()( ),(),(
II

BA
I

BA SMSM =

 

The accurate computation of the two-state integral 
),( BAM  on the far field is possible only via a regular 

displacement based FEM in conjunction with the volume 

integral for three-dimensional domains[6]. Now utilizing 

the domain integral and going through some 

manipulation, we can reach the following expressions: 
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for three-dimensional bodies, where V  and  

represent the domains bounded by  and , and  

and , respectively, and  indicates the region 

bounded by  and  in Fig. 1. The function 

 is a weight function that is defined as 1 on 

S
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II VV −

IIS IS

)( 31 xxq

),( BA

I and as 0 on SII with smooth variation between SI and 

SII. Note that the expression (6) and (7) indicate that M 

and M  are conserved for an arbitrary banded 

volume VII –VI. 
The key idea of calculating lβ  is to utilize the path 

or surface independence property of ),( BAM , as given in 

equation (7). Firstly, a convenient auxiliary state “B” is 

chosen, and the elastic field of the wedge under 

consideration is assigned to “A”.  is then 

calculated semi-analytically on the 

)IS(),( BAM

φθ −  domain of the 

spherical coordinates. We need numerical integration to 
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evaluate the resulting integral on this domain. Next, from 

finite element analysis we obtain  on the 

right hand side of equation (7) with the aid of the volume 

integral expression (8). Then equation (7) yields 

)(),(
II

BA SM

lβ  and 

this value must be invariant with respect to the choice of 

the auxiliary elastic state as ),( BAM  is a bilinear 

functional of the two elastic states “A” and “B”.   

c
lδ

The present procedure now boils downs to the 

choice of a convenient auxiliary state “B”. For this we 

define a complementary eigenfield for a given eigenstate. 

Let the complementary eigenvalue  of an arbitrary 

eigenvalue lδ  be defined in the M-integral sense as 

follows: 

 

        3−=+ c
ll δδ

 
 

4. Numerical Results 

For a numerical example, we choose a three-

dimensional wedge or three-dimensional bimaterial 

interface corner. Labossiere and Dunn[2] computed the 

stress singularity for three-dimensional bimaterial 

corners as shown in Fig. 2 using the finite element 

method. Furthermore, in this work, calculated was the 

near-tip stress intensity for this three-dimensional 

problem. In order to be able to compare our results with 

theirs, we choose the same three-dimensional interface 

corner as designed by Labossiere and Dunn[2] with the 

width h=12.5mm, and the length L=63.5mm in z-axis 

and the loading point distance l=76.2mm as shown in Fig. 

2. The structure consists of 6061-T6 aluminum and cast 

West System 105-205 epoxy. Each material is isotropic 

with E=70.0GPa and ν=0.33 for the aluminum, and 

E=2.98GPa and ν=0.38 for the epoxy. The structure is 

the four-point bending specimen with the square cross 

section with h×h dimensions, where h=12.5mm as shown 

in Fig. 2(see Labossiere and Dunn[2] for detail).  

 

 

P/2 2L 

P/2 l
x 

y Epoxy 
z h 

Aluminum

3-D interface corner

Fig. 2  Geometric configuration of three-dimensional 

interface corner specimen. 

 

Labossiere and Dunn[2] proposed the 

asymptotic stress and a stress intensity with the stress 

singularity sδ  for the three-dimensional interface 

corner geometry as:  

 

),(~~ 3 φθσσ δ n
ij

D
ij

srH        (9.a) 

),,( 21
2

133
0

3 ννσ δ

E
EYhH DDD s−=        (9.b) 

 

where r is the radius from the bimaterial interface corner, 

h the width as shown in Fig. 2, ),,( 21
2

13 νν
E
EDY  is a 

nondimensional function of the elastic mismatch. The 

above stress intensity DH 3  is equivalent to the free 

constant sβ  in Eq. (1) except that their scaling may be 

different from each other due to different normalization 

of between Eq. (1) and (9.a). They obtained DY 3  from 

fitting, using the least squares approach, the asymptotic 

displacements fields to the full-field displacements from 

the finite element solution in the vicinity of the three-

dimensional interface corner along the specific rays 

emanating from the interface corner or vertex. Note that 

 is the bending nominal stress that would exist at 

the bottom edge of a homogeneous beam of dimension 

D3
0σ
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h×h under four-point loading in Fig. 18, and is written as 

 

3
3
0 2

)(3
h

lLPD −
=σ  

 

where P is the applied loading.  

The finite element mesh with 3200 twenty-node 

solid elements and the boundary conditions of the three-

dimensional bimaterial interface corner are shown in Fig. 

22. Relatively refined finite element mesh is employed 

near the three-dimensional bimaterial interface corner. 

We compute the free constant sβ  using the two-state 

M-integral and the finite element analysis using 

ABAQUS, as discussed in previous section. To compare 

the results of Labossiere and Dunn[2] with the present 

results, we compute the nondimensional function DY 3  

in equation (9.b) as tabulated in Table 2. When the 

nondimensional function DY 3  is computed, the present 

result is obtained using the stress singularity sδ =-

0.3586 while the result of Labossiere and Dunn[2] was 

obtained with the stress singularity sδ =-0.351. The two 

results of the nondimensional function DY 3  are in good 

agreement. Using the free constant sβ , we obtain stress 

from the asymptotic solution of equation (1), and 

compare it with the result from the finite element 

analysis along the line 2/πθ =  and 4/πφ =  in Fig. 

23. The finite element solution agrees well with the one 

term expansion (the singular term only) in the region 

)( 22 yx +=ρ < 0.9mm with the width h=12.5mm. 

 

 

5. Conclusions 

We have examined the singular stress field around a 

bimaterial interface corner. Moreover, we propose a 

general and systematic computational scheme for 

computing the singular stress states near the three-

dimensional vertices with the aid of the two-state M-

integral and the eigenfuntion expansion. We first verify 

numerically that the eigenvalues of the given three-

dimensional problem satisfy the complementarity 

relationship, , in the three-dimensional M-

integral sense. This relationship and the surface 

independence of the two-state M-integral are applied for 

extracting the near-tip intensity of the singular stress 

fields for three-dimensional vertices. The two numerical 

examples demonstrate that the present scheme is 

effective and accurate for computing the intensities of 

singular stresses near the generic three-dimensional 

wedges. 

3−=+ c
nn δδ
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Table 1 Complementary pairs of eigenvalues of the 
three-dimensional bimaterial interface corner. 
 (δ ) 3−=+ c

nn δ
Eigenvalue 

-3.35770 ± i0.55264 
-3.00016 
-3.00005 
-3.00000 
-2.64139 
-2.00028 
-2.00022 
-2.00003 

-0.99997 
-0.99978 
-0.99972 
-0.35861 
0.00000 
0.00005 
0.00016 

0.35770 ± i0.55264 
 

 
 
 
Table 2 Nondimensional function DY 3  for the three-
dimensional bimaterial interface corner. 

 
Labossiere 

and Dunn’s 
results 

The present 
results 

Stress 
singularity -0.351 -0.3586 

Y3D 0.303 0.302 
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(b) 
 

Fig. 3 Stresses versus distance from the vertex of the 

interface corner along 2/πθ =  and 4/πφ =  for 

the three-dimensional aluminum/epoxy interface corner 

with h=12.5mm; (a) xxσ , (b) yyσ . 
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