참조응력 개념을 이용한 원주방향 관통균열 배관의 파괴역학 해석 - 실배관 실험 데이터와의 비교

허남 \uparrow^{\dagger} • 심도준^{*}• 김윤재^{*}• 김영진^{*}

Reference Stress Based Fracture Mechanics Analysis for Circumferential Through-Wall Cracked Pipes – Comparison with Pipe Test Data

Nam-Su Huh, Do-Jun Shim, Yun-Jae Kim and Young-Jin Kim

Key Words: Circumferential Through-Wall Crack (원주방향 관통균열), Crack Initiation and Maximum Moment (균열진전 및 최대 모멘트), Reference Stress (참조응력)

Abstract

This paper presents experimental validation of the enhanced reference stress based J estimates for circumferential through-wall cracked pipes, recently proposed by authors. Using the pipe test data for circumferential through-wall cracked pipes, the predicted fracture initiation and maximum moments according to the proposed enhanced reference stress method are compared with experimental ones as well as predictions from the R6 method. The results show that both the R6 method and the proposed method give conservative estimates of initiation and maximum moments for circumferential through-wall cracked pipes, compared to experimental data. For longer cracks, the proposed method reduces conservatism embedded in estimated J according to the R6 method, and the resulting predictions are less conservative, compared to those from the R6 method. For shorter cracks, on the other hand, the proposed method reduces possible non-conservatism embedded in estimated J according to the R6 method. According to the R6 method, and the resulting predictions are slightly more conservative.

1. 서 론

원자력 배관 설계시 파단전누설(Leak-Before-Break; LBB) 개념이 적용되기 시작한 이후, 지난 20여년간 배관에 대한 정확한 탄소성 파괴역학 (Elastic-Plastic Fracture Mechanics; EPFM) 해석법 개 발은 중요한 문제로 인식되어 왔다.⁽¹⁻⁴⁾ 이에 따라 원주방향 관통균열 배관(circumferential through-wall cracked pipe)의 LBB 해석시 필요한 *J*-적분과 균열 열림변위(Crack Opening Displacement; COD)를 예측 하기 위한 많은 공학적 계산식이 제시된 바 있 다.^(5,6)

또한 최근 저자들은 원주방향 관통균열 배관의 J-적분과 COD를 구하기 위한 새로운 공학적 계산 식인 참조응력 개념 기반의 개선된 참조응력 (Enhanced Reference Stress; ERS)법⁽⁷⁾을 제시하였다. R6 평가법⁽⁸⁾에 적용되고 있는 기존의 참조응력 (Reference Stress; RS)법⁽⁹⁾에서는 참조응력 결정시 구조물의 소성한계하중(plastic limit load)을 사용하 며 일반적으로 계산 결과가 부정확하다. 그러나 ERS법에서는 참조응력 결정시 저자들이 새롭게 제시한 최적참조하중(optimised reference load)⁽⁷⁾을 사용하며 실험 결과 및 3차원 유한요소해석 결과 와 비교하여 기존의 방법에 비해 *J*-적분과 COD 계산 결과가 정확함을 입증한 바 있다^(7,10) 또한 ERS법을 복합하중이 작용하는 경우⁽¹¹⁾ 복합균열 이 존재하는 경우⁽¹²⁾ 등에도 확대 적용하고 실험 및 3차원 유한요소해석 결과와 비교하여 타당성을 입증한 바도 있다.

그러나 ERS법의 타당성을 검증하기 위한 기존 의 연구에서는 COD 계산식만 실험 결과와 비교 하였으며 J-적분은 실험적으로 구할 수 없기 때문 에 유한요소해석 결과와만 비교하였다. 따라서 ERS법을 실제 배관 파괴해석에 적용하기 위해서 는 실배관 파괴 실험과의 비교를 통한 J-적분 계 산식의 타당성 검증도 필요하다.

 ^{*} 회원, 성균관대학교 기계공학부
 E-mail:nshuh@safe.skku.ac.kr
 TEL:(031)299-6628 FAX:(031)290-5276
 * 회원, 성균관대학교 기계공학부

Fig. 1 Circumferential through-wall cracked pipes under bending

Fig. 2 Schematic of test frame used in pipe fracture test

Fig. 3 Crack locations for (a) base metal test and (b) weld metal test

본 논문의 목적은 원주방향 관통균열 배관의 J-적분을 예측하기 위한 ERS법의 타당성을 실배관 파괴 실험 결과와 비교하여 검증하는 것이다. 이 를 위해 기 수행된 실배관 파괴 실험⁽¹³⁾으로 구한 균열진전모멘트(crack initiation moment)와 최대모멘 트(maximum moment)를 ERS법의 J-적분 계산식으 로 예측한 결과와 비교하였다.

2. 실배관 파괴 실험 데이터

Fig. 1에 나타낸 바와 같은 굽힘 모멘트가 작용 하는 원주방향 관통균열 배관의 파괴 실험 결과는 미국 바텔(Battelle) 연구소에서 발간한 "Pipe Fracture Encyclopedia"⁽¹³⁾에 수록되어 있다. Fig. 2는 실배관 파괴 실험 장치를 개략적으로 나타낸 것으 로 4점 굽힘법을 이용하여 순수 굽힘 모멘트가 작 용되었다. 또한 배관 파괴 실험은 Fig. 3(a)와 Fig. 3(b)에 나타낸 바와 같이 모재와 용접재에 대해 수행되었으며 실험 조건 및 결과 등은 아래에 자 세히 기술하였다.

2.1 모재에 대한 실험 결과

본 논문에서 고려된 모재에 대한 실배관 파괴 실험 결과는 모두 12개이며 Table 1에 실험 조건을

 Table 1 Summary of pipe test data of circumferential through-wall cracked pipes (Base metal test data)

	uuiu)					
Test I.D.	Material	$2R_o$ (mm)	t (mm)	R_m/t	$\theta \pi$	Temp. (°C)
4111-2	A155	711	23.6	14.56	0.37	288
4111-3	SA358 TP304	1067	7.11	74.54	0.37	7
4111-4	API5L X65	1067	15.9	33.05	0.37	-7
EPRI-6T	SA312 TP304	60.3	6.0	4.53	0.229	22
EPRI-1T	SA376 TP304	114.3	9.0	5.85	0.371	22
EPRI-8T	SA358 TP304	414	26.2	7.40	0.368	22
4131-5	SA376 TP304	158.9	13.9	5.22	0.388	288
4131-7	SA333 Gr. 6	273.1	18.3	6.96	0.346	288
4.3-1	STS-49	763.52	38.18	9.50	0.166	300
1.1.1.21	A155	711	22.7	15.16	0.0625	288
1.1.1.26	TP316L	106.2	8.3	5.90	0.244	21
3.3-1	STS-410	166	14.5	5.22	0.166	300

Table 2 Summary of material data for pipe tests in Table 1

	Te	ensile Da	ta	Fracture Toughness Data			
Test I.D.	E (GPa)	σ_y (MPa)	σ_u (MPa)	J at Initiation (kJ/m^2)	С	т	
4111-2	190.8	230.3	545.4	206.5	185.4	0.31	
4111-3	206.8	224	681	610	354.4	0.39	
4111-4	207.6	425	567	399	528.3	0.49	
EPRI-6T	205.9	246	657	502	1037.3	0.54	
EPRI-1T	205.9	243	629	1800	333.2	0.39	
EPRI-8T	205.9	295	744	2080	1019.3	0.75	
4131-5	190.8	128	447	1090	248.7	0.09	
4131-7	190.5	239	526	158	180.9	0.33	
4.3-1	190.1	242	583	366	248.1	0.55	
1.1.1.21	190.8	231	541.9	206.5	194.3	0.30	
1.1.1.26	206	258	527	680	1014.7	0.62	
3.3-1	190.1	215.8	492.6	367.9	249.8	0.58	

정리하여 나타내었다. 균열이 존재하는 배관의 파 괴역학 해석시 가장 중요한 형상 매개변수는 배관 의 R_m/t 값과 균열길이비인 θ/π 값이다. 본 논문에서 고려된 배관 실험의 경우 R_m/t 값은 4.53~74.54이며, θ/π 값은 0.0625~0.37이다.

배관의 재료는 탄소강과 스테인리스강이 고려 되었으며 배관재의 인장 특성도 "Pipe Fracture Encyclopedia"⁽¹³⁾에 수록되어있다. Table 2에 인장 특 성을 정리하여 나타내었다. 배관 파괴 해석시 필 요한 배관재의 파괴저항 특성도 "Pipe Fracture Encyclopedia"⁽¹³⁾에 수록되어 있다. 파괴저항 특성 은 표준 C(T)(compact tension) 시편으로 측정되었 으며 실험 데이터를 다음과 같이 곡선 적합하여 사용하였다.

$$J(\Delta a) = J_c + C(\Delta a)^m \tag{1}$$

	Jala)						
Test I.D.	Material	Welding Type	$2R_o$ (mm)	t (mm)	R_m/t	θ/π	Temp (°C)
4141-1	SA376 TP304	SAW	168.3	14.3	5.38	0.371	288
4141-3	SA358 TP304	SAW	413.5	26.2	7.39	0.367	288
BCD/WJ- 1	SA106 Gr. B	SMAW	168.3	11.05	7.12	0.304	288
1.1.1.23	SA240 TP316L	SAW	711	30.2	11.27	0.0625	288
1.1.1.24	SA333 Gr. 6	SAW	612	31.3	9.28	0.079	288

 Table 3 Summary of pipe test data of circumferential through-wall cracked pipes (Weld metal test data)

여기서, J_c는 균열 진전 시점의 J-적분값이며, Δa은 균열 진전량(mm)이다. C와 m은 각각 재료 상수이 다. 파괴저항 특성도 인장 특성과 함께 Table 2에 정리하여 나타내었다.

2.2 용접재에 대한 실험 결과

본 논문에서 고려된 용접재에 대한 실배관 파 괴 실험 결과는 모두 5개이며 Table 3에 실험 조건 을 정리하여 나타내었다. Fig. 3(b)에 나타낸 바와 같이 균열은 모두 용접부의 중간에 가공되었다. 실험이 수행된 배관의 *R_m/t*값은 5.38~11.27이며, *θπ* 값은 0.0625~0.37이다.

배관재의 인장 특성 및 파괴저항 특성은 모재 의 경우와 동일하게 "Pipe Fracture Encyclopedia"⁽¹³⁾ 에 수록되어 있으며, Table 4에 정리하여 나타내었 다.

3. 참조응력 개념 기반의 J-적분 계산식

3.1 J-적분 계산식

Fig. 1에 나타낸 바와 같은 굽힘 모멘트가 작용 하는 원주방향 관통균열 배관의 *J*-적분 계산식은 다음과 같다.⁽⁷⁾

$$\frac{J}{J_e} = \frac{E\varepsilon_{ref}}{\sigma_{ref}} + \frac{1}{2} \frac{L_r^2 \sigma_{ref}}{E\varepsilon_{ref}}$$
(2)

여기서, σ_{ref} 는 참조응력이며 ε_{ref} 는 진응력-진변형률 선도의 σ_{ref} 에서 정의되는 진변형률이다. 또한 J_e 는 J-적분의 탄성 성분이다.

식 (2)에서 L,은 소성붕괴 또는 소성역의 성장 정도를 나타내는 매개변수로 다음과 같이 정의된 다.

$$L_r = \frac{\sigma_{ref}}{\sigma_y} = \frac{M}{M_{ref}}$$
(3)

여기서, σ,는 항복강도이며, M은 굽힘 모멘트이다.

Table 4 Summary of material data for pipe tests in Table 3

Test I.D.		Те	nsile D	Data	Fracture Toughness			
		-			Data (V	Veld me	etal)	
		E (GPa)	$(MPa) (MPa) \sigma_u$		J at Initiation (kJ/m^2)	С	m	
4141-1	Base	190.8	134	451	100	183.8	0.37	
4141-1	Weld	190.8	325	466	100	165.6		
4141 2	Base	190.8	174	456	100	183.8	0.37	
4141-3	Weld	190.8	325	466	100			
BCD/	Base	190.8	270	610	160	200.6	0.42	
WJ-1	Weld	190.8	315	669	100	200.0	0.42	
1 1 1 22	Base	190.8	143	427	61	200.3	0.52	
1.1.1.23	Weld	190.8	366	503	01		0.55	
1.1.1.24	Base	190.8	234	521	53	103.2	0.49	
	Weld	190.8	415	575	55	103.2	0.40	

또한 M_{ref}는 기준 모멘트이다.

식 (2)에 나타낸 바와 같이 참조응력 개념 기반 의 J-적분 계산식에서는 J-적분의 탄성 성분과 구 조물의 참조하중만 정의되면 쉽게 J-적분값을 계 산할 수 있다. 따라서 해석 대상의 탄성해와 참조 하중의 정의가 매우 중요하다.

3.2 탄성 J-적분 계산식

굽힘 모멘트가 작용하는 원주방향 관통균열 배 관의 탄성 J-적분식은 이미 핸드북 등으로 많은 해가 제시되어 있다. 본 논문에서는 탄성 J-적분 계산시 연성 파괴 핸드북⁽¹⁴⁾에 제시된 결과를 사 용하였으며 다음과 같이 표현된다.

$$J_e = \frac{K^2}{E'} \tag{4}$$

여기서, E'는 탄성계수로 평면응력 조건에서 E'=E 이고 평면변형률 조건에서 E'=E/(1-v²)이다.

또한 식 (4)에서 K는 굽힘 모멘트가 작용하는 원주방향 관통균열 배관의 응력확대계수로 다음과 같이 표현된다.

$$K = \frac{M}{\pi R_m^2 t} \sqrt{\pi R_m \theta} \left[1 + A \left\{ 4.5967 \left(\frac{\theta}{\pi}\right)^{1.5} + 2.6422 \left(\frac{\theta}{\pi}\right)^{4.24} \right\} \right]$$
$$A = \left\{ \begin{bmatrix} 0.125 \left(\frac{R_m}{t}\right) - 0.25 \end{bmatrix}^{0.25} & \text{for} \quad 5 \le \frac{R_m}{t} \le 10 \\ \begin{bmatrix} 0.4 \left(\frac{R_m}{t}\right) - 3.0 \end{bmatrix}^{0.25} & \text{for} \quad 10 \le \frac{R_m}{t} \le 20 \end{bmatrix} \right\}$$
(5)

여기서, *R_m*, *t* 그리고 *θ*는 Fig. 1에 나타낸 바와 같 이 각각 배관의 평균반경, 두께, 그리고 균열각의 1/2이다.

3.3 참조응력(*σ*_{ref}) 계산식

전술한 바와 같이 R6 평가법⁽⁸⁾에 적용되고 있는

기존의 참조응력법에서는 식 (2)와 식 (3)의 참조 응력 결정시 소성한계하중을 사용한다. 굽힘 모멘 트가 작용하는 원주방향 관통균열 배관의 소성한 계모멘트는 다음과 같다.⁽¹⁵⁾

$$M_L = 4\sigma_y R_m^2 t \left(\cos\frac{\theta}{2} - \frac{1}{2}\sin\theta \right) \tag{6}$$

그러나 소성한계하중을 사용한 기존의 참조응력 법으로 구한 J-적분 계산 결과는 일반적으로 부정 확하다.⁽¹⁶⁾ 따라서 저자들은 J-적분 계산 결과의 정 확성을 향상시키기 위해 제한된 유한요소해석을 통해 새로운 참조하중인 최적참조하중을 제시하였 으며, 굽힘 모멘트가 작용하는 원주방향 관통균열 배관의 최적참조모멘트는 다음과 같이 정의된다.^(7,10)

$$M_{oR} = \gamma(\theta) \cdot M_L$$

$$\gamma(\theta) = 0.82 + 0.75 \left(\frac{\theta}{\pi}\right) + 0.42 \left(\frac{\theta}{\pi}\right)^2 \text{ for } \theta/\pi \le 0.5$$
(7)

여기서, ML은 식 (6)에 정의되어 있다.

4. 파손평가도를 이용한 균열 평가

본 논문에서는 원주방향 관통균열 배관의 균열 진전모멘트와 최대모멘트를 결정하기 위해서 파손 평가도(Failure Assessment Diagram; FAD)법을 이용 하였다. FAD를 이용한 균열 평가법은 R6 평가법⁽⁸⁾ 에 자세히 기술되어 있으며 본 논문에서는 이를 간략히 기술하였다.

4.1 파손평가도(FAD) 작성

L_r과 K_r 평면으로 나타내어지는 FAD는 재료의 인장 데이터와 정확도에 따라 3가지 식으로 구성 되어 있다. 본 논문에서는 재료의 전체 응력-변형 률 곡선을 알고 있을 경우 적용되는 옵션 2식⁽⁸⁾을 사용하였으며 이는 구조물 평가시 가장 일반적으 로 적용되고 있다. 옵션 2식은 다음과 같이 표현 된다.

$$K_{r} = \begin{cases} \left(\frac{E\varepsilon_{ref}}{L_{r}\sigma_{y}} + \frac{1}{2}\frac{L_{r}^{3}\sigma_{y}}{E\varepsilon_{ref}}\right)^{-1/2} & \text{for} \quad 0 \le L_{r} \le L_{r}^{max} \\ 0 & \text{for} \quad L_{r}^{max} \le L_{r} \end{cases}$$
(8)

여기서 Lr^{max}는 다음과 같이 정의된다.

$$L_r^{max} = \frac{\left(\sigma_y + \sigma_u\right)}{2\sigma_y} \tag{9}$$

여기서, σμ는 인장강도이다.

Fig. 4 Schematic illustration for determination of initiation and maximum moments based on the failure assessment diagram approach

본 논문에서는 모재와 용접재에 대한 실험 모두 모재의 인장물성치를 사용하여 FAD를 작성하였다. Fig. 4는 FAD를 도식적으로 나타낸 것이다.

4.2 *L*r의 결정

FAD상에서 균열 안정성을 평가하기 위한 하중 비 *L*_r은 다음과 같이 정의된다.

$$L_r = \frac{M}{M_{ref}(a_j)} \tag{10}$$

여기서, $M_{ref}(a_j)$ 는 균열길이 a_j 에서의 기준 모멘트 값을 의미한다.

균열진전모멘트를 결정하는 경우에는 M_{ref} 계산 시 초기균열길이인 a_o 가 사용되며(즉 $a_j=a_o$) 최대 모멘트 결정시에는 균열길이를 증가시키며 M_{ref} 값 을 계산하게 된다.

기존의 참조응력법(R6 평가법)을 이용하는 경우 에는 식 (10)의 기준모멘트로 식 (6)의 소성한계모 멘트를 사용하였으며($M_{ref}=M_L$), ERS법을 이용하는 경우에는 식 (7)의 최적참조모멘트를 사용하였다 ($M_{ref}=M_{oR}$). 4.1절에서도 언급된 바와 같이 식 (6)과 식 (7)에서 사용되는 항복강도는 모재과 용접재에 대한 실험 모두 모재의 항복강도값을 사용하였다. Table 4에 나타낸 바와 같이 일반적으로 용접재의 항복강도는 모재의 항복강도에 비해 크다. 따라서 모재의 항복강도를 이용하면 L_r 값은 커지게 되므 로 균열진전 및 최대모멘트를 작게 예측한다. 반 대로 용접재의 항복강도를 사용하면 크게 예측되 기 때문에 모재의 항복강도를 사용하는 것이 바람 직하다.

4.3 Kr의 결정 Kr은 다음과 같이 정의된다.

$$K_r = \frac{K}{K_{mat}(a_j)} \tag{11}$$

여기서, K는 구조물의 응력확대계수이며 K_{mat}(a_j)는 균열길이 a_i에서의 파괴인성치이다.

 Table 5 Comparison of predicted initiation moments according to the R6 method and the ERS method with experimental data for base metal test data in Table 1

	Experimental	Predi	ction	Ratio $(M_{pre.}/M_{exp.})$		
Test I.D.	Results	P 6	ERS	P 6	ERS	
	(kN-m)	KU	method	KU	method	
4111-2	814.77	610	630	0.75	0.77	
4111-3	615.2	410	430	0.67	0.70	
4111-4	1469.06	980	1000	0.67	0.68	
EPRI-6T	4.84	3.7	3.8	0.76	0.79	
EPRI-1T	17.24	14	15.5	0.81	0.90	
EPRI-8T	745.6	530	590	0.71	0.79	
4131-5	28.93	20	22.5	0.69	0.78	
4131-7	112.17	90	96	0.80	0.86	
4.3-1	4139.19	3000	2900	0.72	0.70	
1.1.1.21	2565.70	2220	1980	0.87	0.77	
1.1.1.26	16.57	14	14.5	0.84	0.88	
3.3-1	71.32	64	63	0.90	0.88	

Fig. 5 Examples for determining initiation and unstable maximum moments using R6 method and the proposed ERS method

균열진전모멘트를 결정하는 경우에는, K 계산시 초기균열길이(a=a)가 사용되며 K_{mat}은 파괴인성치 (J_c)를 이용하여 다음과 같이 구한다.

$$K_{mat}(a_o) = \sqrt{\frac{EJ_c}{\left(1 - \nu^2\right)}}$$
(12)

최대모멘트를 결정하는 경우에는 균열길이를 증 가시키며 각각의 균열길이 a_j 에서의 K값을 계산하 며, K_{mat} 값도 각각의 a_j 에 대해 다음과 같이 구한다.

$$K_{mat}\left(a_{j}\right) = \sqrt{\frac{EJ(\Delta a)}{\left(1 - \nu^{2}\right)}}$$
(13)

여기서, J(∆a)는 식 (1)을 이용하여 계산된다.

4.4 균열진전모멘트와 최대모멘트의 계산

Fig. 4에 FAD를 이용한 균열진전모멘트와 최대모 멘트 예측방법을 도식적으로 나타내었다. 균열진전

Fig. 6 Comparison of predicted initiation moments from the R6 method and the ERS method with experimental data for base metal test, as a function of (a) R_m/t and (b) θ/π

모멘트(*M_{ini}*)는 초기하중 상태에서 모멘트를 증가 시켜 하중 작용점과 FAD 선도가 만나는 지점에서 의 모멘트이다. 그러나 이때 쩢김궤적(tearing locus)이 FAD 선도 아래에 위치하면 균열은 안정 성장을 하며, 쩢김궤적과 FAD 선도가 접하게 되 는 모멘트가 균열의 불안정성장을 발생시키는 최 대모멘트(*M_{max}*)이다. Fig. 5는 Table 1의 배관 실험 결과 중 4111-3에 대해 균열진전모멘트와 최대모 멘트를 결정한 예를 나타낸 것이다. 이때 3.3절에 언급한 바와 같이 R6 평가법에 적용되고 있는 참 조응력법과 저자들이 제시한 ERS법이 모두 적용 되었다.

5. 균열 평가 결과

5.1 균열진전모멘트 예측 결과

Table 5는 모재에 대한 실배관 실험으로 구한 균 열진전모멘트를 R6 평가법과 ERS법으로 예측한 결과와 비교한 것으로, 모멘트값과 하중비(예측결 과와 실험결과의 비)를 함께 나타내었다. Fig. 6은 하중비를 배관의 R_m/t값과 θ/π값에 대해 나타낸 것 이다. Table 5에 나타낸 바와 같이 R6 평가법과 ERS법 모두 하중비가 0.67~0.90으로 1보다 작았으 며 따라서 실배관 실험 결과를 작게 예측하였다. 그러나 Fig. 6(b)에 나타난 바와 같이 균열길이가 짧은 3가지 경우를 제외하면 ERS법으로 예측한 결과가 1에 가깝게 나타났다. 균열길이가 짧은 경 우에 소성한계하중을 이용한 참조응력법은 J-적분 을 작게(J-적분의 경우 비보수적) 예측한다고 알려 져 있으며⁽⁹⁾ ERS법은 기존 참조응력법의 부정확성 을 개선한 방법이기 때문에 예측하중이 작게 나타 났다. Fig. 7(a)는 배관 재질에 따른 균열진전모멘트 예측 결과를 나타낸 것으로 탄소강과 스테인리스 강 배관 모두 유사한 경향을 나타내었다.

Table 6은 용접재에 대한 실배관 실험으로 구한 균열진전모멘트를 R6 평가법과 ERS법으로 예측한 결과와 비교한 것이며, Fig. 8은 하중비를 배관의 *R*_m/t값과 θπ값에 대해 나타낸 것이다.

Table 6과 Fig. 8에 나타난 바와 같이 용접재에

Table 6 Comparison of predicted initiation moments
according to the R6 method and the ERS
method with experimental data for weld metal
test data in Table 3

	Experimental	Pred	iction	Ratio $(M_{pre.}/M_{exp.})$		
Test I.D.	Results	D.6	ERS	P 6	ERS	
	(kN-m)	KU	method	KO	method	
4141-1	29.59	17.5	19.5	0.59	0.66	
4141-3	195.05	200	210	1.03	1.08	
BCD/WJ- 1	40.13	32	33	0.80	0.82	
1.1.1.23	2621.26	1600	1450	0.61	0.55	
1.1.1.24	2284	1400	1350	0.61	0.59	

Fig. 7 Comparison of predicted moments from the R6 method and the ERS method with experimental data for base metal test, in terms of materials: (a) initiation and (b) maximum moments

Fig. 8 Comparison of predicted initiation moments from the R6 method and the ERS method with experimental data for weld metal test, as a function of (a) R_m/t and (b) θ/π

대한 하중비가 모재에 비해 작게 나타났다. 이는 4.2절에 기술한 바와 같이 *L*, 계산시 모재의 항복 강도가 사용되었기 때문이다. 또한 4141-3의 경우 는 하중비가 1보다 크게 나타나 실험 결과보다 크 게 예측되었는데 이는 실배관 실험 및 재료물성치 와 관련된 불확실성에서 기인한 것으로 판단된다. 그러나 다음 절에 나타낸 바와 같이 최대모멘트의 경우는 작게 예측되었다.

5.2 최대모멘트 예측 결과

Table 7은 모재에 대한 실배관 실험으로 구한 최 대모멘트를 R6 평가법과 ERS법으로 예측한 결과 와 비교하여 나타낸 것이며, Fig. 9는 하중비를 R_m/t 값과 θ/π값에 대해 나타낸 것이다. 전체적인 예측

 Table 7 Comparison of predicted maximum moments according to the R6 method and the ERS method with experimental data for base metal test data in Table 1

	Experimental	Predi	ction	Ratio $(M_{pre.}/M_{exp.})$		
Test I.D.	Results	D(ERS	P 6	ERS	
	(kN-m)	KU	method	KU	method	
4111-2	1205.7	870	930	0.72	0.77	
4111-3	915.6	550	600	0.60	0.66	
4111-4	2668.6	2150	2300	0.81	0.86	
EPRI-6T	4.88	4.5	4.65	0.92	0.95	
EPRI-1T	17.35	14.2	15.7	0.82	0.90	
EPRI-8T	784.55	570	640	0.73	0.82	
4131-5	37.66	21	23.5	0.56	0.62	
4131-7	154.84	106.2	117	0.69	0.76	
4.3-1	6015.40	4000	3980	0.66	0.66	
1.1.1.21	3016.30	2470	2300	0.82	0.76	
1.1.1.26	17.11	16.5	17	0.96	0.99	
3.3-1	92.76	75	75.5	0.81	0.81	

Table 8 Comparison of predicted maximum moments
according to the R6 method and the ERS
method with experimental data for weld metal
test data in Table 3

	Experimental	Predi	iction	Ratio $(M_{pre.}/M_{exp.})$		
Test I.D.	Results	P6	ERS	P 6	ERS	
	(kN-m)	KU	method	KU	method	
4141-1	37.50	20.3	22.7	0.54	0.61	
4141-3	377.14	265	295	0.70	0.78	
BCD/WJ- 1	51.36	39	41.5	0.76	0.81	
1.1.1.23	3063.62	2200	2040	0.72	0.67	
1.1.1.24	3416	2250	2110	0.66	0.62	

경향은 균열진전모멘트의 경우와 비슷하였다. 또 한 Fig. 7(b)에 나타난 바와 같이 최대모멘트의 경 우도 예측 경향은 배관 재질에 무관하게 유사하였 다. Table 8과 Fig. 10은 용접재에 대한 최대모멘트 비교결과를 나타낸 것이다. Fig. 11은 배관 재질에 따른 용접재 배관의 결과를 나타낸 것으로 균열진 전모멘트와 최대모멘트 예측 경향은 모재의 경우 와 동일하게 배관 재질에 무관하게 유사하였다.

6. 토 의

앞의 결과에서 나타난 바와 같은 균열진전모멘 트와 최대모멘트를 작게 예측하는 보수성의 원인 은 크게 두 가지로 구분할 수 있다. 첫번째는 파 괴저항 시편과 실배관 균열부의 구속 상태 차이에 서 기인하는 파괴물성치의 보수성이다. 일반적으 로 파괴저항 시편은 실배관에 비해 균열부 구속상 태가 높기 때문에 시편에서 구한 파괴물성치를 실 배관 평가시 직접 적용하면 해석결과가 보수적이 다. 두번째는 작용하중에 의한 J-적분 계산방법의 보수성이다. 전술한 바와 같이 저자들이 제시한 ERS법은 기존의 참조응력법에 비해 J-적분 계산

Test I.D.	FE Results	R6	ERS method	GE/EPRI	Paris/Tada	LBB.NRC	LBB.GE	LBB.ENG1	LBB.ENG2
4111-2	0.77	0.72	0.77	-	-	-	-	-	-
EPRI-8T	0.88	0.73	0.82	0.66	0.77	0.76	0.72	0.70	0.68
4131-7	0.88	0.67	0.76	0.55	0.65	0.71	0.64	0.63	0.61
4141-1	0.67	0.54	0.61	0.39	0.65	0.60	0.45	0.44	0.42
4141-3	0.83	0.70	0.78	0.58	0.81	0.80	0.65	0.63	0.61

Table 9 Comparison of predicted maximum moments with those based on FE J results

Fig. 9 Comparison of predicted maximum moments from the R6 method and the ERS method with experimental data for base metal test, as a function of (a) R_m/t and (b) θ/π

Fig. 10 Comparison of predicted maximum moments from the R6 method and the ERS method with experimental data for weld metal test, as a function of (a) R_m/t and (b) θ/π

결과가 정확하다. 이를 입증하기 위해 실배관 실 험을 3차원 유한요소해석으로 모사하여 최대모멘 트를 예측하였으며 이를 R6 평가법과 ERS법으로 구한 결과와 비교하였다. 또한 참조응력법외의 다 른 공학적 계산식^(5~6)으로 예측한 결과와도 비교하 였다. 유한요소해석은 Table 1과 Table 3에 나타낸 실배관 실험 가운데 5가지 경우에 대해 수행하였 다. 유한요소해석으로 최대모멘트를 예측할 때에 는 J/T 평가법을 이용하였으며 자세한 계산 절차 는 참고문헌 (17)에 기술되어있다. 해석시 사용된 배관 재료의 실제 응력-변형률 곡선은 "Pipe Fracture Encyclopedia"⁽¹³⁾에 수록되어 있는 결과를 사용하였다. 참조응력법외의 공학적 계산식으로 최대모멘트를 예측하는 경우에는 미국 바텔 연구 소에서 개발한 NRCPIPE 프로그램⁽¹⁸⁾을 이용하였 다. Table 9는 각각의 방법으로 구한 최대하중비를

Fig. 11 Comparison of predicted moments from the R6 method and the ERS method with experimental data for weld metal test, in terms of materials: (a) initiation and (b) maximum moments

비교하여 나타낸 것으로 ERS법으로 구한 결과는 실험조건에 관계없이 기존의 R6 평가법과 다른 공학적 계산식으로 구한 결과보다 유한요소해석 결과와 14%내에서 잘 일치하였다. 따라서 ERS법 으로 구한 J-적분 결과의 정확성이 입증되었다. 4111-2의 경우, NRCPIPE 프로그램의 오류로 인해 R6 평가법과 ERS법을 제외한 다른 방법은 값이 계산되지 않았다.

7. 결 론

본 논문에서는 원주방향 관통균열 배관의 J-적 분을 예측하기 위한 ERS법의 타당성을 검증하기 위해서 ERS법과 R6 평가법으로 예측한 균열진전 모멘트와 최대모멘트를 실배관 실험 결과와 비교 하였다. 비교 결과 R6 평가법과 ERS법 모두 실험 결과를 작게 예측하였다. 균열이 긴 경우에는 ERS법이 R6 평가법의 J-적분 계산식에 내재된 보 수성을 줄여 하중 예측 결과는 R6 평가법에 비해 크게 나타났다. 균열이 짧은 경우에는 ERS법이 R6 평가법의 J-적분 계산식에 내재된 비보수성을 개선하여 하중 예측 결과는 R6 평가법보다 작았 다. 또한 ERS법으로 구한 최대모멘트는 R6 평가 법과 다른 공학적 계산식으로 예측한 값보다 유한 요소해석 결과와 잘 일치하였다.

따라서 ERS법의 J-적분 계산식과 COD 계산식^(7,10) 의 정확성이 모두 입증되었으며 향후 원자력 배관 의 LBB 해석 및 균열 안정성 평가시 ERS법이 널 리 적용될 수 있을 것으로 판단된다.

후 기

본 논문은 한국과학재단 산하 성균관대학교 산 업설비 안전성평가 연구센터의 연구비 지원으로 이루어진 것으로서, 이에 관계자 여러분들께 감사 드립니다.

참고문헌

- (1) Wilkowski, G., Ahmad, J., Barnes, C., Broek, D., Kramer, G., Landow, M., Marschall, C., Maxey, W., Nakagaki, M., Scott, P., Papaspyropoulos, V., Pasupathi, V. and Popelar, C., 1985, "Degraded Piping Program Phase-II," NUREG/CR-4082, USNRC.
- (2) Wilkowski, G., Ahmad, J., Brust, F., Ghadiali, N., Krishnaswamy, P., Landow, M., Marschall, C., Scott, P. and Vieth, P., 1991, "Short Cracks in Piping and Piping Welds," NUREG/CR-4599, USNRC.
- (3) Wilkowski, G., Schmidt, R., Scott, P., Olson, R., Marschall, C., Kramer, G. and Paul, D., 1997, "International Piping Integrity Research Group (IPIRG) Program – Final Report," NUREG/CR-6233, USNRC.
- (4) Hopper, A., Wilkowski, G., Scott, P., Olson, R., Rudland, D., Kilinski, T., Mohan, R., Ghadiali, N. and Paul, D., 1997, "The Second International Piping Integrity Research Group (IPIRG-2) Program – Final Report," NUREG/CR-6452, USNRC.
- (5) Rahman, S., Brust, F., Ghadiali, N. and Wilkowski, G., 1998, "Crack-Opening-Area Analyses for Circumferential Through-Wall Cracks in Pipes – Part I: Analytical Models," *International Journal of Pressure Vessels and Piping*, Vol. 75, pp. 357~373.
- (6) Rahman, S., Brust, F., Ghadiali, N. and Wilkowski, G., 1998, "Crack-Opening-Area Analyses for Circumferential Through-Wall Cracks in Pipes – Part II: Model Validations," *International Journal of Pressure Vessels and Piping*, Vol. 75, pp. 375~396.
- (7) Kim, Y.J., Huh, N.S. and Kim, Y.J., 2001, "New Engineering Estimation Method of *J*-Integral and COD for Circumferential Through-Wall Cracked Pipes," *Transactions of the KSME(A)*, Vol. 25, No. 3, pp. 548~553.

- (8) "R6: Assessment of the Integrity of Structures Containing Defects," Revision 3, British Energy Generation Ltd., 1999.
- (9) Ainsworth, R.A., 1984, "The Assessment of Defects in Structures of Strain Hardening Materials," *Engineering Fracture Mechanics*, Vol. 19, pp. 633~642.
- (10) Huh, N.S., Kim, Y.J. and Kim, Y.J., 2001, "Application of Enhanced Reference Stress Method to Nuclear Piping LBB Analysis: Finite Element Validation," *Transactions of the KSME(A)*, Vol. 25, No. 4, pp. 741~747.
- (11) Kim, Y.J, Huh, N.S. and Kim, Y.J., 2002, "Reference Stress Based Elastic-Plastic Fracture Analysis for Circumferential Through-Wall Cracked Pipes under Combined Tension and Bending," *Engineering Fracture Mechanics*, Vol. 69, pp. 367~388.
- (12) Huh, N.S., Kim, Y.J. and Kim, Y.J., 2001, "New Engineering Approach for Estimating Crack Opening Displacement of Complex Cracked Pipes," *Transactions of the KSME(A)*, Vol. 25, No. 8, pp. 1235~1241.
- (13) "Pipe Fracture Encyclopedia, Vol. 3-Pipe Fracture Test Data," Battelle, 1997.
- (14) Zahoor, A., 1991, "Ductile Fracture Handbook, Vol. 1-Circumferential Throughwall Cracks," Novetech Corp.
- (15) Miller, A.G., 1988, "Review of Limit Loads of Structures Containing Defects," *International Journal* of Pressure Vessels and Piping, Vol. 32, pp.191~327.
- (16) Miller, A.G. and Ainsworth, R.A., 1989, "Consistency of Numerical Results for Power-Law Hardening Materials and the Accuracy of the Reference Stress Approximation for *J*," *Engineering Fracture Mechanics*, Vol. 32, No. 2, pp. 233~247.
- (17) Huh, N.S., Kim, Y.J., Pyo, C.R. and Yu, Y.J., 2000, "Effect of Finite Element Model on the Integrity Evaluation of Nuclear Piping," *Journal of the KIIS*, Vol. 15, No. 2, pp. 51~58.
- (18) "NRCPIPE Windows Version 3.0 User's Guide," Battelle, 1996.