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 Many papers have studied computer simulations of elastic bodies undergoing large deflections and large deformations. 
But there have not been many attempts to check the validity of the numerical formulations because the simulation 
results could not be matched without correct input data such as material properties and damping effects. In this paper, 
these values are obtained from real experiment with a high-speed camera and a data acquisition system. The simulation 
results with the absolute nodal coordinate formulation (ANCF) are compared with the results of real experiments. Two 
examples, a thin cantilever beam and a thin plate, are studied to verify whether the simulation results are well matched 
to experimental results.  
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1. Introduction 
 
The absolute nodal coordinate formulation (ANCF) 

was known a nice technique for modeling and simulation 
of large deformation and large displacement problems 
[1]. In this formulation, displacements of each finite 
element are represented relative to the global frame of 
reference. And the equations of motion with this 
formulation generate a constant mass matrix and a 
constant vector of generalized gravity forces as well as 
zero centrifugal and Coriolis forces [2]. Thus, the only 
nonlinear term in the equations of motion is the vector of 
elastic forces. 

Although this formulation is widely used for 
simulations of large deformation problems with nice 
animations, no paper was written concerning the validity 
of these simulations by comparing with real experiments. 
Without correct input data, such as air damping in the 
motion, the simulation could not be well matched to the 
experimental results. Thus, in this paper, Young’s 
modulus E and the damping ratio of the material used in 
the simulation are obtained from the real experiments. 
Thus, the precise validation of the ANCF could be 
checked. For the author’s knowledge, this is the first 
paper to compare the ANCF formulation to real 
experiments. Two experiments, a 2D beam deflection 
and a thin plate oscillation, are carried out and compared 
to show the validity of the simulations.  

For the modeling of a 2D beam, many models of 
elastic forces have been proposed which use a matrix 
representation of the beam shape functions and nodal 
coordinates [3]. In this paper, a new geometrical 
treatment of the absolute nodal coordinates is suggested. 

Nodal displacements and nodal slopes are employed for 
the finite element formulation. The position of an 
arbitrary point in the beam centerline is then expressed as 
a linear combination of the nodal vectors with the shape 
functions used as coefficients. This approach is identical 
to the matrix representation proposed in paper [4], but it 
avoids the problem of using zero values for the shape 
function matrix. Strain energy, elastic forces and their 
Jacobian matrices are calculated explicitly using tensor-
like relations. 

For a modeling of a thin plate, a 48 d.o.f. plate 
element is developed with a two-dimensional 
beam×beam plate element. The element is the direct 
generalizations of 16 d.o.f. element usually used in the 
finite element method. The Kirchhoff plate theory with 
nonlinear strain-displacement relationships was used to 
calculate elastic forces as well as differential geometry of 
surfaces in 3D space to calculate mid-plane deformations 
and transverse curvatures and twist. 

For the modeling of material damping and air 
resistant damping, the Rayleigh’s proportional damping 
was employed to account for resistance forces. To choose 
the constants in the proportional damping, we carried out 
oscillations of a cantilever beam and a thin plate with an 
end-point weight attached. Furthermore, we obtained 
experimental data on the large deflections of a 2D beam 
and a thin plate to verify the results generated by ANCF.   
To the best of the authors’ knowledge, this paper is the 
first to compare data from simulations and real 
experiments on large deformations of beams. 

The paper is organized as follows. A description of 
our experimental setup for a beam is explained in chapter 
2, and the results from the experiments and computer 
simulations of a beam are compared in chapter 3. An 
experimental setup for a plate is explained in chapter 4, 
and results from the experiments and computer 
simulations of a plate are compared in chapter 5, and the 
conclusions are listed. 

†Corresponding author  
CAElab, NRL, Pusan National University 

E-mail : wsyoo@pusan.ac.kr 
TEL : (051)510-2328  FAX : (051)512-2328  

 705

대한기계학회 2003년도 춘계학술대회 논문집

mailto:wsyoo@pusan.ac.kr


2. Experiments of Large Deflection of 2D 

 

Target 
Refe
rence High speed  Beam 

 
The large deflection experiments of a beam focus on 

the motion of a cantilever beam with a weight attached to 
the free end as presented in Fig. 1. 

Clamp
ing 

 
Flexible beam Highly flexible  

5.5m

a) location of high-speed 

Rigid Body m, IC 

Fig. 1 Cantilever beam with attached mass
 
2.1 Experimental Setup with a High Speed 

Camera 
 
An accelerometer is usually used to measure 

accelerations and displacements. However, the beam 
used in this research is too thin to install an 
accelerometer. Therefore, a high-speed camera 
(REDLAKE Motion Scope type), which runs up 
1000frames per second, is used to measure motion.  

c) deformed b) lighting 

Fig. 2 Experimental setup 
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The beam used in this test has diameter of 1mm, and 
are made of industrial spring steel. To make it a 
cantilever, the beam is clamped tightly by a heavy jig, 
and is held in place by two thick steel blocks. The mass 
of the clamp is 1.74kg, which is 1700 times heavier then 
the mass of the beam. Moreover, the clamp is secured 
with 4 bolts, which ensures a cantilever beam. 0
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To track the end point deflection, a tracking mark was 
bonded at the tip. The experimental setup was installed 
as shown in Fig. 2, and deflections were captured by a 
high-speed camera.  

Fig. 3 The first frequency 

 
2.2 Free Vibration to Calculate Young’s  

Modulus and Damping Ratio 
 

The stiffness of the beam (i.e., Young’s modulus E), 
which is its most important material property, is  
calculated by an indirect method rather than a tensile test.  
Because the beam is too thin to fix at the tester, it is 
difficult to conduct such a test properly. Therefore the 
beam’s stiffness is calculated using its measured first 
mode and its density. The first step is to measure the 
deflection of beam; the second is to calculate the first 
frequency of the cantilever beam. The third one 
calculates the stiffness using relationship between the 
frequency and the material’s properties. The first 
frequency for the beam was obtained from the FFT of the 
free vibration, which is shown in Fig. 3. From the Fig. 3, 
the first frequency of the beam is obtained as 4.315Hz.   

The stiffness of the beam can be calculated from the 
frequency of the first mode as seen in [1] 

 

4
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where lnβ  represents the initial constraints of the 
beam. The stiffness can then be calculated according to 
the formula found in [2]: 
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The calculated value E of the 1mm diameter beam was 
200 GPa. Next, the damping ratio must be calculated for 
the simulation. To model the damping, a particular form 
of proportional Rayleigh damping [4] is employed and 
the system damping matrix assumes the following form: 

 
CMD βα +=  (3)

 
which includes the mass matrix M and the stiffness 
matrix C multiplied by the coefficients defined below: 
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which themselves depend on the frequencies ω1 and ω2, 
as well as on the damping ratios ζ1 and ζ2 for the first two 
modes of the system that appear from the dynamic modal 
equations: 
 

02 2 =++ iiiiii xxx ωωζ &&& . 
 

 

The ratios ζ1 and ζ2 should be calculated from the 
experimental data. These coefficients depend on the 
damping ratios ζ1 and ζ2 for the first lower modes of the 
oscillations. The first ratio is calculated in accordance 
with the formula from reference [5]. 

 

2
1

11
1 2

1
2

−







 +=

π
δ

π
δζ . 

 

where δ1 is the logarithmic decrement. In case of low-
level damping (such as this one), when δ1 << 2π, we can 
use the simplified expression 

π
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2

1
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The logarithmic decrement δ1 can be estimated from 
the experimental sequence of magnitudes using the 
simple relationship below. 
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2.3 Large Deformation of 2D Beam 

 
A measured mass was attached to the end of a beam 

to induce large deformation and a circular target point 
was glued on to track the beam’s displacement. The mass 
at the end of the beam is supported until the test begins: 
it is released when the camera starts rolling.  

The shape and location of the attached mass are 
shown in Fig. 4, and the parameters of the various 
objects used in this test are provided in Table 1. 

 
 

Table 1 End-body parameters 
 

Shift of mass 
center, mm 

 
Body
№ 

 
Descrip 

Tion 

m0 
mass 

g ρCx ρCy 

IC 
mass inertia 

moment 
kg·m2 

1 paper target 0.023 0 0 ~10–10≈0 

2 Attached mass 20.0 0 -13 1.58·10–6 

   
Since the paper target’s mass is very small, its effect 

on the results of the large deformation test is negligible. 
However, for the deflection without attached mass, the 
target’s mass should be considered. A photograph of a 
large deformation of the beam is shown in Fig. 5. Not 
surprisingly it shows much deformation due to effect of 
the attached mass. The results of the endpoint deflections 
are measured 336mm, and the natural frequency of the 
beam was found 1.204Hz by using the FFT process. 

 

 
 

Fig. 5 A beam after a test of large deformation 
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Fig. 6 Shapes and chronologies of the large 

deformations (1mm diameter, 20g attached mass) 
 
The maximum displacement in the vertical direction 

is about 86% of the beam’ s length. The shapes and 
chronologies of these deformations are presented in Fig. 
6. hi

After conducting the test of large deformation, the 
beams were retested to measure their plastic deformation.  
As the beams returned back to their original positions 
when the attached masses are removed, there was no 
plastic deformation. 

Fig. 4 Attached mass  
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3. Comparison of Simulation and  
Experiment with 2D Beam 

 
Let us perform these calculations for the following 

case: the beam with diameter d = 1 mm and end-point 
mass m0 = 20 g of the target. With the following values 
from experiments, ω1 = 6.7 rad/s, ω2 = 33 rad/s, 
∆1 = 0.987, and ζ1 = ζ2 = 0.002, constants α and β are 
calculated as α = 0.02 s–1, β = 1·10–5 s, respectively. One 
can see that the value of β is much smaller than that of α. 
It is thus natural to try to ignore the stiffness-proportional 
part of the damping forces [4] and use the simpler 
damping matrix: 
 

MD α= . (6)
 

Numerical integration shows that the results obtained 
by both models and equation (6) differ only in 4th-5th 
significant digits. However, the integration step in the 
case of the full damping matrix produces a value that is 
20 times smaller because the equations of motion are 
much stiffer in that case. This is why the simplified 
model of damping forces (6) is used in the numerical 
examples below. As can be seen in Fig. 7, the simulation 
result shows a nice agreement.  

 
 

4. Experiments of a Thin Plate Oscillation 
 
This section focuses on the large motion of a thin 

plate with a weight attached to the free end.  
 

4.1 Experimental Results of a Plate 
 
The experimental setup for the plate oscillation is 

shown in Fig. 8.  The camera traces the target fixed at 
the tip. Since the motion occurs in a three dimensional 
space, the distance from the camera to the target is 
changing when the deflection occurs. Thus, the camera is 
installed as far as possible to reduce this kind of visual 
distance error. Since the camera is installed 10m from 
the target in the experiments, the maximum error is less 
then 2.5% when the deflection is about 25mm.  

The tip position of a 400mm*204mm plate with 400g 
of attached mass is shown in Fig. 9, and the x, y, and z 
positions in time domain are shown in Fig. 10. 

 
 

Z  
 
 
 
 
 
 y 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 8 Experimental setup for a thin plate 
 

 

 
.Fig. 9   Tip position in space 
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Fig. 10 Tip positions in time domain 
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Fig. 7 Comparison of experiments and simulation 
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4.2 Frequency and Damping Ratio for the 
 Simulation 

 
To verify the natural frequencies of the plate, the time 

domain data are transformed by FFT which is shown in 
Fig. 11. The first and the second modes are clearly 
shown, and the first modal frequency is about 1.2Hz. 
And this value of the frequency is used to calculate the 
Young’s modulus E of the plate, which is used for the 
input data in the simulation.  
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Fig. 11 Natural frequency of the plate 

 
To determine the damping ration of the plate, the 

response in the time domain is captured for 32 seconds. 
And the damping ratio calculated using the following 
formula are used in the simulation. 
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5. Comparison of Simulations and  
Experiments of a Thin Plate 
 

5.1 Free Oscillation of a plate 
 
In Fig. 12, the experimental and calculated results of 

the vertical displacements of the plate’s end-point in free 
vibration are compared. The experimental curve is drawn 
with a solid line, while the calculated one curve is drawn 
with a dashed line. As one can see in Fig. 12, the two 
kinds of results (measured and computed) agree nicely. 
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Fig. 12 Free oscillation of the plate  

 

5.2 Oscillation with an Attached Mass 
 
Figure 13 presents the results for the 400mm*204mm 

plate with 400g of attached mass. The simulation results 
and experimental results are compared in Fig. 16. As 
shown in Fig. 16, x and z positions are in a good 
agreement. After a few seconds, there are some time lags 
between two results. The reason, the authors suppose, 
may came from the values of Young’s modulus and 
damping ratio but the differences are not too big.   

The y position shows some deviations, but it is not a 
big deal if one verifies that the maximum magnitude of 
the y-directional deflection is very small. 

Thus, the large deflection simulation of a beam with 
ANCF formulation and the experimental results are in a 
good agreement. 
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(a) x positions 
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(b) y positions 
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(c) z positions 

 
Fig. 13 Comparison of experiments and simulation 

(plate, tip mass 400g) 
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6. Conclusions 
 
In this paper, experiments and simulations of a 2D 

cantilever beam and a thin plate with an attached end-
point weight are compared. To input a precise data for 
the material damping and air resistant damping in the 
simulation, we carried out several experiments.  

Rayleigh’s proportional damping was applied to 
account for resistance forces in large oscillation cases. It 
was found that when such resistance forces are small, it 
is possible to ignore the stiffness-proportional part of the 
damping forces and focus exclusively on the mass-
proportional part. 

To the best of the authors’ knowledge, this is the first 
paper to compare the results of simulations and 
experiments in this context. Thus we have obtained some 
new results during this investigation. 

We used the ANCF (absolute nodal coordinate 
formulation) for modeling of 2D beam and suggested a 
vector-algebra notation for the components of the vector 
of the nodal coordinates. To simulate the plate oscillation, 
we developed a new 48 dof plate element from 
beam*beam element. The comparison of simulation to 
experiment with a thin plate oscillation also showed a 
nice agreement.  
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