공진분기회로를 이용한 평판의 진동제어

김영호[†]• 박철휴^{*}• 박현철^{*}

Vibration Control of Plates Using Resonant Shunted Piezoelectric Material

Young Ho Kim, Chul Hue Park and Hyun Chul Park

Key Words: Resonant shunt circuit (공진분기회로), Piezoelectric material (압전체), Passive vibration control (수동진동제어), Electrical absorber (전기적 흡진기)

Abstract

Vibration control of plates with a passive electrical damper is presented in this paper. This electrical absorber, piezoelectric patches connected with a resistor and an inductor in series, is analogous to the damped mechanical vibration absorber. For estimating the effectiveness of piezoelectric absorber, the governing equations of motion are derived using a classical laminate plate theory and Hamilton principle. The developed theoretical analyses are validated experimentally for simply-supported aluminum plates in order to demonstrate the performance of passive electrical damper. The result shows that the vibration amplitude is reduced about 14dB for the targeted first vibration mode.

1. 서 론

80 년대 이후 본격적으로 연구되기 시작한 압전 체(piezoelectric material)를 이용한 능동제어 방법은 고전압 전원 장치의 필요성과 복잡한 제어 알고리즘으로 인하여 그 성능에 비해 시스템의 설 치 고비용의 단점이 존재하였다.

최근에 이르러서는 이러한 단점들을 보완하기 위해 압전체에 부가적인 전기회로(shunt circuit) 를 연결시킴으로써 진동에 의해 발생된 기계적 에 너지를 전기적 에너지로 변환하여 소산시키는 전 기적 진동 흡진기로써 사용하는 연구가 수행되기 시작하였다. Hagood 와 Von Flotow⁽¹⁾ 등은 저항 분기회로 감쇠(resistive shunted damping) 과 공 진분기회로에 의한 감쇠(resonant shunted damping)에 관하여 재료적인 측면과 시스템적인 측면에서의 이론적인 고찰 및 시스템의 이론적인 전달함수를 수식화하고 이를 실험과 비교하였다. Hollkamp⁽²⁾ 은 공진분기회로 시스템의 특성에 따 라 스스로 동조 주파수를 조절하는 자기동조

- ' 포항공과대학교 기계공학과 대학원
- 정회원, 포항공과대학교 기계공학과

(self-tuning) 압전감쇠기에 대한 연구를 수행하 였으며, Park⁽³⁾ 등은 PZT 션트댐핑과 점탄성층의 댐핑의 성능을 비교하여 온도변화에 따른 조건에 서 션트회로의 우수성을 입증하였다. 압전체를 이용하여 진동 감쇠기로써의 역할을 함과 동시에 작동기의 역할도 할 수 있는 연구도 수행되었는데 Tsai 와 Tang⁽⁴⁾ 등은 다양한 형태의 Activepassive hybrid piezoelectric networks (APPN)의 진동 감쇠 성능 향상에 대한 연구를 수행 하였다.

본 연구에서는 압전체에 공진분기회로 (resonant shunt circuit)를 전기적으로 연결시킨 압전체를 수동감쇠기로서 이용하여 사각 평판의 특정 진동모드만을 감쇠 시키는 선택적인 진동모 드 제어를 수행하였다. 압전체가 부착된 사각 판 의 시스템 모델링은 고전 판이론과 해밀턴의 원리 를 이용하여 시스템의 모드 운동방정식을 유도하 였으며, 기계적 진동 흡진기 모델을 적용하여 시 스템의 전달 함수를 구함으로써 공진분기회로가 시스템의 특정 진동모드에 미치는 감쇠 효과를 해 석적으로 시뮬레이션 하였고 이를 실험 결과와 비 교 분석하였다. 실험은 단순지지 경계조건 하에서 수행되었으며 실험 결과 사각 판의 1 차 진동모드 에서 약 14 dB의 진동제어 성능을 보였다.

2. 이 론

2.1 시스템의 운동방정식

시스템의 운동방정식을 구하기 위하여 판이론 과 해밀턴 원리가 이용되었으며 또한 패치형태의 압전체를 고려하기위해 계단함수(Heaviside's function)를 이용하였다.

2.1.1 변형율-변위 관계

본 논문에 이용된 판이론은⁽⁵⁾ 판의 중립면의 변 형이 없고 처짐이 작은 경우의 판이론인 kirchhoff 가정에 의하여 다음과 같이 변형률-변 위의 관계는 나타내어 진다.

$$\varepsilon_x = \frac{\partial u}{\partial x}, \quad \varepsilon_y = \frac{\partial v}{\partial y}, \quad \gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}$$
(1)

식(1)을 z 성분에 관하여 적분을 행하면 다음과 같다.

$$u = u_0(x, y) - z \frac{\partial w}{\partial x}, \quad v = v_0(x, y) - z \frac{\partial w}{\partial y},$$

$$w = w(x, y)$$
(2)

식(2)에서 중립면에서의 x,y 방향으로의 변위 를 나타내는 u_0 와 v_0 는 고전 판이론의 가정에 의 하여 $u_0 = v_0 = 0$ 이 된다. 식 (1)과 (2) 을 이용 하여 x, y, xy 방향의 변형률을 변위 w 에 관하여 나타내어 보면 다음과 같다.

$$\varepsilon_x = -z \frac{\partial^2 w}{\partial x^2}, \ \varepsilon_y = -z \frac{\partial^2 w}{\partial y^2}, \ \gamma_{xy} = -2z \frac{\partial^2 w}{\partial x \partial y}$$
 (3)

2.1.2 운동방정식

Fig. 1 와 같이 판에 압전체가 패치 형태로 부 착된 시스템의 운동방정식을 유도하기 위해서 에 너지 방법중의 하나인 해밀턴원리(Hamilton's principle)를 이용하였으며 다음과 같은 가정을 통하여 유도되었다: 1) 압전체는 판과 완전히 부 착되었으며 접착층의 두께는 무시된다. 2) 압전체 의 전극의 두께는 무시된다. 3) 압전체의 전극 방 향은 양의 횡방향 변위 방향과 일치한다. 4) 회전 관성은 무시된다.

해밀턴 원리를 적용하면 다음과 같다.

$$\int_{t1}^{t2} \left[\delta T_p + \delta T_s + \delta U_p + \delta U_s + \delta U_{ES} + \delta W_v \right] dt = 0 \quad (4)$$

식(4)에서 아래 첨자 p,s는 각각 판과 압전체 를 나타낸다. 즉, T_p 는 판의 운동 에너지, T_s 는 압전체의 운동 에너지, U_p 는 판의 변형률 에너지, U_s 는 압전체의 변형률 에너지, U_{ES} 는 압전체의 전기적인 에너지, 그리고 W_v 는 가상일(virtual work) 항이며 각각을 구해 보면 다음과 같다.

$$\begin{split} T_{p} &= \frac{1}{2} \int_{A} \rho_{p} h_{p} \left(\frac{\partial w}{\partial t} \right)^{2} dx dy \\ T_{s} &= \frac{1}{2} \int_{A} \rho_{s} h_{s} \left(\frac{\partial w}{\partial t} \right)^{2} \Delta H dx dy \\ U_{p} &= \frac{1}{2} \int_{A} D_{p} \left\{ \left(\frac{\partial^{2} w}{\partial x^{2}} \right)^{2} + \left(\frac{\partial^{2} w}{\partial y^{2}} \right)^{2} + 2v_{p} \frac{\partial^{2} w}{\partial x^{2}} \frac{\partial^{2} w}{\partial y^{2}} \right. \\ &\quad + 2(1 - v_{p}) \left(\frac{\partial^{2} w}{\partial x^{\partial y}} \right)^{2} \right\} dx dy \\ U_{s} &= \frac{1}{2} \int_{A} D_{s} \left\{ \left(\frac{\partial^{2} w}{\partial x^{2}} \right)^{2} + \left(\frac{\partial^{2} w}{\partial y^{2}} \right)^{2} + 2v_{s} \frac{\partial^{2} w}{\partial x^{2}} \frac{\partial^{2} w}{\partial y^{2}} \right. \\ &\quad + 2(1 - v_{s}) \left(\frac{\partial^{2} w}{\partial x \partial y} \right)^{2} \right\} \Delta H dx dy \\ U_{ES} &= \frac{1}{2} \int_{A} \left\{ \beta_{33} h_{s} D_{3}^{2} + h_{31} J_{s} D_{3}^{*} \left(\frac{\partial^{2} w}{\partial x^{2}} \right) + h_{32} J_{s} D_{3}^{*} \left(\frac{\partial^{2} w}{\partial y^{2}} \right) \right. \\ &\quad + h_{31} J_{s} D_{3} \left(\frac{\partial^{2} w^{*}}{\partial x^{2}} \right) + h_{32} J_{s} D_{3} \left(\frac{\partial^{2} w^{*}}{\partial y^{2}} \right) \right\} \Delta H dx dy \\ W_{v} &= V_{s} \int_{A} D_{3} \Delta H dx dy \\ &\quad + \int_{A} \left(f(x, y, t) w(w, y, t) - c_{b} \frac{\partial w}{\partial t} w \right) dx dy \end{split}$$
(5)

Fig. 1 Fig.1 Schematic diagram of piezo/plate system

식(5)에서 $h \doteq$ 압전체가 대칭적으로 부착된 평판 의 중립면으로부터의 거리를 나타내며 $J_s = \frac{1}{2}(Z_{us}^2 - Z_{ls}^2)$ 이다. V_s , f(xyt), $c_b \doteq$ 각각 압전 체에 작용하는 전압과 외력 그리고 감쇠 상수를

882

나타낸다. D_3^* 와 w^* 는 에너지 방법을 적용할 때 변분 원리(variational principle)를 취할 수 없 는 변수를 나타낸다. 식(5)를 이용하여 압전체가 패치형태로 대칭적으로 부착된 평판의 운동방정식 을 구해보면 다음과 같다.

$$\rho_{p}h_{p}\left(\frac{\partial^{2}w}{\partial t^{2}}\right) + \rho_{s}h_{s}\left(\frac{\partial^{2}w}{\partial t^{2}}\right) + D_{p}\left(\frac{\partial^{4}w}{\partial x^{4}}\right) + v_{p}\left(\frac{\partial^{4}w}{\partial y^{4}}\right) + 2D_{p}v_{p}\left(\frac{\partial^{4}w}{\partial^{2}y\partial x^{2}}\right) + 4D_{p}\left(1 - v_{p}\right)$$

$$\left(\frac{\partial^{4}w}{\partial y^{2}\partial x^{2}}\right) + \prod_{1}\triangle H + \prod_{2}\frac{\partial\triangle H}{\partial x} + \prod_{3}\frac{\partial\triangle H}{\partial y} + \prod_{4}\frac{\partial^{2}\triangle H}{\partial x^{2}} + \prod_{5}\frac{\partial^{2}\triangle H}{\partial y^{2}} + \prod_{6}\frac{\partial^{2}\triangle H}{\partial y\partial x} + c_{b}\frac{\partial w}{\partial t} = F$$
(6)

식 (6)에서 П₁~П₆는 아래와 같다.

$$\Pi_{1} = \left[2D_{s} \left(\frac{\partial^{4} w}{\partial x^{4}} \right) + 2v_{s} \left(\frac{\partial^{4} w}{\partial y^{4}} \right) + 4D_{s} v_{s} \left(\frac{\partial^{4} w}{\partial^{2} y \partial x^{2}} \right) \right] + 4D_{p} (1 - v_{p}) \left(\frac{\partial^{4} w}{\partial y^{2} \partial x^{2}} \right) \right] \Pi_{2} = \left[4D_{s} \left(\frac{\partial^{3} w}{\partial x^{3}} \right) + 4D_{s} v_{s} \left(\frac{\partial^{3} w}{\partial y^{2} \partial x} \right) + 4D_{s} (1 - v_{s}) \left(\frac{\partial^{3} w}{\partial y^{2} \partial x} \right) \right] \\\Pi_{3} = \left[4D_{s} \left(\frac{\partial^{3} w}{\partial y^{3}} \right) + 4D_{s} v_{s} \left(\frac{\partial^{3} w}{\partial y \partial x^{2}} \right) + 4D_{s} (1 - v_{s}) \left(\frac{\partial^{3} w}{\partial y \partial x^{2}} \right) \right] \\\Pi_{4} = \left[2D_{s} \left(\frac{\partial^{2} w}{\partial x^{2}} \right) + 2D_{s} v_{s} \left(\frac{\partial^{2} w}{\partial y^{2}} \right) + D_{3} \right] \\\Pi_{5} = \left[2D_{s} \left(\frac{\partial^{2} w}{\partial y^{2}} \right) + 2D_{s} v_{s} \left(\frac{\partial^{2} w}{\partial x^{2}} \right) + D_{3} \right] \\\Pi_{6} = \left[4D_{s} (1 - v_{s}) \left(\frac{\partial^{2} w}{\partial y \partial x} \right) \right]$$

여기서 D₃ 항은 압전체에 의해서 부가적으로 발생 하는 감쇠효과에 영향을 미치는 항이다.

2.2 모달 운동방정식

식(6)의 운동방정식을 이용하여 각각의 모드별 로 분리된 모달 운동방정식을 구한 후 공진분기회 로에 의해 각각의 모드에 부가적으로 증가된 모달 감쇠량의 영향을 알아 보기위해 참고논문(1)에서 사용된 진동 흡진기 시스템의 전달 함수를 이용하 여 공진분기회로에 의한 영향을 알아보고자 한다.

2.2.1 모달 운동방정식
2 차원 평판의 횡방향 변위 w(x,y)는 다음과 같
이 변수 분리되어 질 수 있다⁽⁶⁾.

$$w(x, y, t) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} W_{mn}(t) \Phi_{mn}(x, y)$$
(7)

여기서 $W_{mn}(t)$ 와 $\Phi_{mn}(x,y)$ 는 각각 평판의 (m,n)모드에서의 시간만의 함수와 모달 형상 함수이다. 변수 분리와 모드 직교성을 이용해 모달 운동방정 식을 구하기 위해 앞에서 구한 시스템의 운동방정 식(6)에 식(7)를 대입한 후 양변에 (m,n)모드의 고 유함수 $\Phi_{mn}(x,y)$ 를 곱하여 모달 운동방정식을 구 해보면 다음과 같다.

$$M\ddot{W}_{mn}(t) + (C_b + C_{shunted})\dot{W}_{mn}(t) + KW_{mn}(t) = F$$
(8)

여기서 *M*, *C_b*, *K*는 각각 모달질량, 모달감쇠, 모달강성이며 *F*와 *C_{shunted}*는 각각 시스템에 가해 지는 외력과 공진분기회로에 의해 발생된 부가적 인 모달감쇠이며 각각은 다음과 같다

$$\begin{split} M &= \rho_p h_p \int_A \Phi \Phi dx dy + \rho_s h_s \int_A \Phi \Phi \Delta H dx dy \\ C_b &= c_b \int_A \Phi \Phi dx dy \\ K &= \int_A \Biggl\{ \Biggl[D_p \Biggl(\frac{\partial^4 \Phi}{\partial x^4} + \frac{\partial^4 \Phi}{\partial x^4} + 2v_p \frac{\partial^2 \Phi}{\partial x^2} \frac{\partial^2 \Phi}{\partial y^2} + 2(1 - v_p) \frac{\partial^4 \Phi}{\partial x^2 \partial y^2} \Biggr) \Biggr] \Phi \\ &+ \Biggl[D_s \Biggl(2 \frac{\partial^4 \Phi}{\partial x^4} + 2 \frac{\partial^4 \Phi}{\partial x^4} + 4v_s \frac{\partial^2 \Phi}{\partial x^2} \frac{\partial^2 \Phi}{\partial y^2} + 4(1 - v_s) \frac{\partial^4 \Phi}{\partial x^2 \partial y^2} \Biggr) \Biggr] \Phi \Delta H \\ &+ \Biggl[D_s \Biggl(4 \frac{\partial^3 \Phi}{\partial x^3} + 4v_s \frac{\partial^3 \Phi}{\partial x \partial y^2} + 4(1 - v_s) \frac{\partial^3 \Phi}{\partial x \partial y^2} \Biggr) \Biggr] \Phi \frac{\partial \Delta H}{\partial x} \\ &+ \Biggl[D_s \Biggl(4 \frac{\partial^3 \Phi}{\partial x^3} + 4v_s \frac{\partial^3 \Phi}{\partial x^2 \partial y} + 4(1 - v_s) \frac{\partial^3 \Phi}{\partial x \partial y^2} \Biggr) \Biggr] \Phi \frac{\partial \Delta H}{\partial x} \\ &+ \Biggl[D_s \Biggl(2 \frac{\partial^2 \Phi}{\partial x^2} + 2v_s \frac{\partial^2 \Phi}{\partial y^2} \Biggr) \Biggr] \Phi \frac{\partial^2 \Delta H}{\partial x^2} + \Biggl[D_s \Biggl(2 \frac{\partial^2 \Phi}{\partial y^2} + 2v_s \frac{\partial^2 \Phi}{\partial x^2} \Biggr) \Biggr] \Phi \end{aligned}$$

2.2.2 시스템의 일반화된 전달함수

공진분기회로를 시스템의 관점에서 보면 스프 링-감쇠기-질량으로 구성되는 기계적 진동 시스템 의 흡진기와 유사하다. 질량과 시스템의 자체 강 성, 그리고 시스템의 자체 강성과 평행하게 연결 된 모달 임피던스가 첨가된 시스템에 외력이 가해 질 때의 힘과 변위에 관한 시스템의 일반화된 전 달함수는 다음과 같다.

$$\frac{x}{F/K_{total}} = \frac{\left\{ \left(\delta^2 + \Omega^2\right) + \delta^2 r \Omega \right\}}{\left\{ \left(1 + 2\xi\Omega + \Omega^2\right) \left(\delta^2 + \Omega^2 + \delta^2 r \Omega\right) + K_{ij}^2 \left(\Omega^2 + \delta^2 r \Omega\right) \right\}}$$
(10)

식 (10)에서 사용된 각각의 무차원화 변수들은 각각 무차원 주파수 $\Omega = s/\omega_n^E$, 전기적인 감쇠계수 $r = RC_p^s \omega_n^E$, 동조비(tuning ratio) $\delta = \omega_e/\omega_n^E$, 전기 적인 공진주파수 $\omega_e = 1/\sqrt{LC_p^s}$, 단선상태(short circuit)의 압전체가 부착된 시스템의 기계적인 공 진주파수 $\omega_n^E = \sqrt{(K+K^E)/M}$ 이다. 일반화된 전기-기 계적인 연성계수(generalized coupling coefficient) K_{ij} 는 다음과 같다⁽¹⁾.

$$K_{ij}^{2} = \left(\frac{K^{E}}{K + K^{E}}\right) \left(\frac{k_{ij}^{2}}{1 - k_{ij}^{2}}\right)$$
(11)

식(11)에서 K, K^E는 각각 평판-압전체 시스템 의 모달강성과 단락상태에서의 모달강성을 나타낸 다.

3. 실험방법 및 결과

3.1 실험장치 및 방법

실험에 이용된 압전체는 후지세라믹사의 평판 형태(plate type) 작동기용 압전세라믹으로 길이, 폭, 두께가 50×20×0.5 mm 이며 평판으로 사용된 알루미늄 판은 길이, 폭,두께가 195×195×1 mm 이 다. 압전 세라믹에 대한 물성치는 Table 1 에 나 타내었다. 공진분기회로에 이용된 인덕터는 Fig.2 과 같으며 이는 인덕터와 등가의 역할을 하여 인 덕턴스를 발생시키는 액티브 필터(active filter) 이다. 주파수 동조시 발생하는 시행착오 횟수를 감소시키기 위해 회로해석 프로그램인 Pspice 를 이용하였다.

실제 실험 장치의 모습을 각각 Fig. 3 에 나타 내었다. 시스템의 주파수 응답을 측정하기 위해 입력으로써 랜덤 전압을 사용하였고 출력전압은 가속도계를 이용하여 측정하였다. 주파수 응답 측 정에 필요한 랜덤 전압 입력은 스펙트럼 분석기 내의 소스모듈에서 발생시키는 랜덤 입력전압을 이용하였고, 출력 전압은 가속도계에서 감지한 전하를 전하 증폭기(charge amplifier)를 이용하 여 전압으로 변환 시킨 후 이를 출력 전압으로 이 용하였다. 3.2 이론 및 실험결과

평판의 (1,1)모드에 대한 실험 및 이론적인 해석 을 수행하여 이를 비교 분석하였다.

Table 1 Main piezoelectric parameters of the PZT

Property	Symbol Value	
Dielectric Const.	$\varepsilon_{33}^T/\varepsilon_0$	3400
Young's modulus	E_{11}	59 GPa
Young's modulus	E ₃₃	52 GPa
Coupling Coeff.	<i>k</i> ₃₁	0.36
Capacitance	$C^s_{ m p}$	$0.06 \mu F$
Poisson's ratio	v_s	0.3

Fig. 2 Electrical circuit diagram of an active filter ⁽⁷⁾

Fig. 3 Experimental setup for piezo/plate system

3.2.1 (1,1)모드 진동제어(실험)

본 실험에서는 trial-and error method 를 사용 하여 먼저 15000Ω부터 차례대로 공진분기회로의 저항 값을 감소시키며 실험을 하였으며 이에 대한 시스템의 주파수 응답을 측정하여 Fig. 4 에 나타 내었다. Fig. 4 에서 알 수 있듯이 저항 값을 줄임에 따 라서 제어 효과가 증가하게 되는데, 그 이유는 전 기적인 관점에서 직렬 RLC 공진회로에서 저항 값 이 줄어들수록 같은 전압 값에 대해서 더 큰 전류 가 흐르므로써 Q factor 가 증가하기 때문이다. 하 지만 저항 값이 너무 작아지면 오히려 감쇠 시키 고자 하는 주파수에 대칭적으로 진동이 더욱 커 지게 되므로 최적의 저항 값은 대략 650 Ω 정도 이며 약 14 dB 정도의 진동 감쇠 효과가 있다. 또한 본 실험에서 공진 분기회로에 의한 진동감쇠 는 감쇠 시키고자 하는 모드 외에는 영향을 미치 지 않음 목격할 수 있었다.

3.2.2 (1,1)모드 진동제어(해석)

실험에서 사용되어진 압전체의 전기-기계적인 연성 계수가 k=0.36 을 사용하여 해석적인 시뮬레 이션 결과를 각각 Fig. 5 에 나타내었다. 그림에서 보여진 결과에 의하면 저항값 (b) 15000 Ω (c) 4000 Ω 을 사용했을 때 압전/판 시스템의 주파수 응답 함수는 일치하는 경향을 보이나 저항값이 낮아질 수록 실험치와는 일치하지 않는 경향을 보인다. 이는 인위적 인닥터에서 발생하는 주파수 증가에 따라 증가하는 잠재 저항과 전기부품소자에서 발 생하는 저항에 의한 것이다.

이러한 단점을 극복하고 실험치를 예견할 수 있는 해석적인 시뮬레이션을 위해 연성계수, k, 를 0.17로 두고, 해석적인 결과를 얻었다[Fig. 6]. 해 석에 사용된 저항값은 실험에서 사용된 저항값과 같은값을 사용하였다. 실험에서와 마찬가지로 저 항 값이 줄어들수록 시스템의 진동감쇠 효과가 증 가 하였으며 저항값 650 Ω 에서 최적의 진동감쇠 를 효과를 나타내었다.

3.2.3 (1,1)모드에 대한 실험과 해석의 비교 해석적인 방법에 의한 주파수 응답은 모달 방 정식에 대한 주파수 응답이므로 이를 실험결과와 비교 할 때 각각의 모드의 superposition에 의해 나타나는 주파수응답의 경우에 다른 모드의 overlapping 효과가 커서 스펙트럼 분석기에 나타 나는 주파수응답과 한 모드만을 고려한 해석적인 시뮬레이션에 의해서 구해진 모달주파수 응답의 직접적인 절대 값 비교는 무리가 있다고 생각되어 본 논문에서는 보다 더 정확한 해석을 위해서 각 각의 저항 값에 따른 주파수응답 크기를 0과 1사 이의 값들로 정규화(normalization)하여 그 값들 의 오차를 비교 하였다. Table 2에서 k=0.17 로 가정한 해석적인 결과와 실험값이 비교적 잘 일치 하고 특히 최적저항 값 근처에서의 오차는 더욱 작기 때문에 실험적으로 찾기 어려운 최적저항 값 을 이론적으로 쉽게 찾아낼 수 있었다.

Fig. 4 Experimental transfer response of the piezo/plate system for the (1,1) vibration mode: (a) open (b) 15000Ω (c) 4000Ω (d) 1000Ω (e) 650Ω (f) 450Ω

Fig. 5 Analytical transfer response of the piezo/plate system for the (1,1) vibration mode, k=0.36: (a) open (b) 15000 Ω (c) 4000 Ω (d) 1000 Ω (e) 650 Ω (f) 450 Ω

Fig. 6 Analytical transfer response of the piezo/plate system for the (1,1) vibration mode, k=0.17: (a) open (b) 15000 Ω (c) 4000 Ω (d) 1000 Ω (e) 650 Ω (f) 450 Ω

Table 2 에 나타내었던 이론적인 값과 실험값과의 오차를 curve fitting 을 시행한 결과를 Fig. 7 에 나타내었다. Fig. 7 에서 보여지듯이 최적저항 값 근처에서는 저항 값이 작아짐에 따라서 감쇠효 과가 급격히 커지는 현상을 보이는데, 이는 공진 분기회로의 Q factor 가 저항 값에 따라 선형적으 로 변화하지 않고 최적저항 값 근처에서부터는 지 수 함수적으로 증가하기 때문에 그만큼 기계적인 진동에너지가 전기에너지로 많이 변환되어 소모되 기 때문이다.

Table 2 Normalized	vibration	amplitude	for (1,1) mode
--------------------	-----------	-----------	----------	--------

Resistance	Experiment	Theory
15000 Ω	0.5561	0.5937
4000 Ω	0.5144	0.5330
1000 Ω	0.4171	0.4043
650 Ω	0.3754	0.3492
400 Ω	0.337	0.2794

Fig. 7 Comparison between experimental result and analytic simulation result for the (1,1) mode

4. 결론

압전체에 인덕터와 저항을 연결시킨 공진분기 회로를 이용하여 압전/평판 시스템의 (1,1)진동모 드의 감쇠를 실험적, 이론적으로 수행하였다. 압전 체가 부착된 사각 판의 시스템 모델링은 고전 판 이론과 해밀턴의 원리를 이용하여 시스템의 모드 운동방정식을 유도하였으며, 기계적 진동 흡진기 모델을 적용하여 시스템의 전달 함수를 구함으로 써 공진분기회로가 시스템의 특정 진동모드에 미 치는 감쇠 효과를 해석적으로 시뮬레이션 하였고 이를 실험 결과와 비교 분석하였다. 인위적 인탁 터에서 발생하는 주파수 증가에 따라 증가하는 잠 재 저항과 전기부품소자에서 발생하는 저항과 그 리고 시스템의 실험적 경계조건의 불완전성, 압전 체의 생산 명세서의 오차에 의한 에러가 발생하는 이러한 단점을 극복하고 정확한 결과를 예측할 수 있는 해석적인 시뮬레이션을 위해 연성계수를 조 절함으로써 최적의 진동감쇠 효과를 나타내는 최 적저항 값을 이론적으로 찾아 낼 수 있었다.

후 기

본 논문은 두뇌한국 21 사업에 의해서 수행되었음.

참고문헌

- Hagood, N. W. and von Flotow, A., 1991, "Damping of Structural Vibration with Piezoelectric Materials and Passive Electrical Networks," *Journal* of sound vibration, Vol. 146(2), pp. 243-268.
- (2) Hollkamp, J.J., 1994, "A Self-tuning Piezoelectric Vibration Absorber," *Journal of intelligent material system and structures*, Vol. 5, pp. 559-566.
- (3) Park, C. H., Mulford, M. and Inman D. J., 1998 "A Comparison of Passive Electronic and Mechanical Damping Treatments", *ICAST 98 International Conference on Adaptive Structures and Technologies*, pp. 94-104.
- (4) Tang. J. and Wang, K. W.,2001, "Active-passive Hybrid Piezoelectric Networks for Vibration Control: Comparisons and Improvement," *Smart materials and structures*, Vol. 10, pp 794-806.
- (5) Reddy, J.N., 1997, *Mechanics of Laminated Plates: Theory and Analysis*, Boca Raton, FL: CRC press.
- (6) Meirovitch,L.,1997, *Principles and Techniques of Vibrations*, London, Prentice Hall.
- (7) Horowitz, P. and Hill, W., 1989, *The Art of Electronic*, Press Syndicate of the University of Cambridge.
- (8) Moon, S. H., Yun, C. Y. and Kim, S. J., 2002, "Passive Suppression of Nonlinear Panel Flutter using Piezoelectric Materials with resonant Circuit", *KSME International Journal*, Vol. 16, No.1, pp.1-12.