Fouling

*. †. **. ***

A Study on the Formation of Fouling in a Heat Exchanging System for HAN-River Water as Cooling Water

Sun-Kyung Sung*, Sang-Ho Suh[†], Hyung-Woon Roh^{**} and Young-Il Cho^{***} **Key Words:** Fouling(), Heat Exchanging System(), River Water()

Fouling Resistance(), (Overall Heat Transfer Coefficient)

Abstract

Scale is formed when hard water is heated or cooled in heat transfer equipments such as heat exchangers, condensers, evaporators, cooling towers, boilers, and pipe walls. When scale deposits in a heat exchanger surface, it is traditionally called fouling. The objective of the present study is to investigate the formation of fouling in a heat exchanging system. A lab-scale heat exchanging system is built-up to observe and measure the formation of fouling experimentally. Water analyses are conducted to obtain the properties of HAN river water. In the present study a microscopic observation is conducted to visualize the process of scale formation. Hardness of HAN-river water is higher than that of tap water in Seoul.

가

*** Drexel Univeristy. Dept. of Mech. Eng.

.(2) 2.2 Fouling resistance $R_f = -\frac{1}{U_f} = -\frac{1}{U_c}$ (1) 1990 (1) $U_{\rm f}\,$, Uc (2) lab-scale $, \Delta T_{LMID}$ (2) \boldsymbol{A} (3) Fouling 2. 2.1 ଘୃ? (precipitation), (particulate), (biological) (corrosion), $Q = \left[\left. mC_{j} (T_{j} - T_{o}) \right]_{k} = \left[\left. mC_{j} (T_{o} - T_{j}) \right]_{c}$ (4) (freezing) Fig. 1 ୍ଦ? (4) T_{LMTD} 가 ? test section (solubility) A/D convertor Visual Basic Excel (CaCO₃), (BaSO₄), (CaSO₄), ୍ଦ? $T_{LMTD} \\$ (2) (Silica), (Fe) (CaCO₃) (1) (coolant) 3. 3.1 가

- 1274-

Fig. 1 Photograph of fouling and schematic diagram of fouling formation

Fig. 2 Experimental equipments and reagents for water analysis

(dissolved mineral ions)

. Fig. 2 (reagents)

buret, 7, Stirrer7, .
, pH (conductivity) pH meter conductivity meter , , (hardness) alkalinity, chloride buffer, powder, indicator

3.2 Fouling

Fouling Fig. 3 Fig. 4

Fig. 3

, Fig. 4 Fig. 3

Hard water

hard water ,

, , conductivity meter,

2003

Fig. 3 Photograph of a lab-scale fouling experimental apparatus

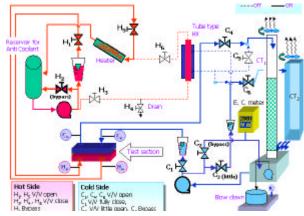


Fig. 4 Schematic diagram of lab-scale fouling experimental apparatus

가

가 . Fig. 5 fouling , (copper plate)

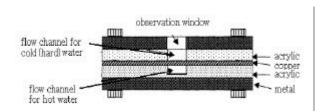


Fig. 5 Cut-away view a test section

(× CCD camera(SONY) (50W)thermo-couple A/D convertor PC Visual Basic 4. 4.1 Fig. 2 pH, alkalinity, chloride Fig. 6 Table 1 Table 1 (1, 2) 280μ S/cm 76mg/L 50% 23%

가

(a) Calcium hardness

(b) Chloride

Fig. 6 Photographs of experimental procedures for measuring water properties

Table 1 Water analysis data measured for river water and tap water

	HAN-river	Tap water	
Conductivity (\mu S/cm)	260~300	187	
рН	7.8~ 8.2	7.4	
Ca Hardness (mg/L)	58~74	50	
Mg Hardness (mg/L)	13~ 16	12	
Total Hardness (mg/L)	71~82	62	
Alkalinity (mg/L)	60~80	42	
Chloride (mg/L)	26~ 32	26	

. , Alkalinity Chloride

4.2
Fig. 3 Fig. 4

. Table 2 20
. 20 가
가
. 95
. 가 가 가

2000±30 μ S/cm가

Table 2	Setting	values	of	fouling	parameters
---------	---------	--------	----	---------	------------

	values	
Conductivity	2000 μS/cm	
Temperatures	Cold side : 20 Hot side : 95	
Flow rates	Cold side : 0.24 lpm(1.5m/s) Hot side : 2.6 lpm	

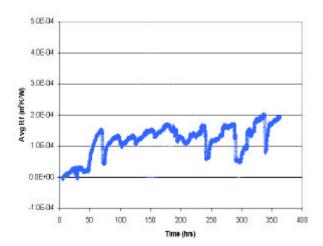


Fig. 7 Variation of fouling resistance with time

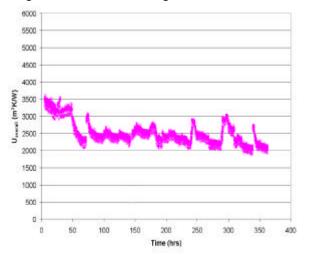
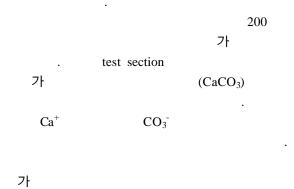
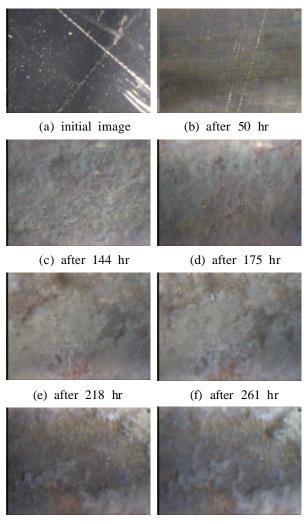




Fig. 8 Variation of overall heat transfer coefficient with time

Test section ?

Fig. 7 Fig. 8

. Fig. 7 Fi	ig. 8			360
Fig. 7		•		
	가			
		가		
. ,		(Particulate	Fouling)	
,		(F	Precipitation	n or
Crystallization For	uling)			
		(Particulate	Fouling)	
	50			
			test	section
	,	, ,		
가				•



フト 150 . . .

.

(g) after 334 hr (h) after 363 hr Fig. 9 Time history photographs at inlet temperature of 20 and velocity of 1.5 m/s (magnification =40×)

Fig. 10 Time history microphotographs at inlet temperature of 20 and velocity of 1.5 m/s (magnification =100×)

Fig. 10 Fig. 9 가 100 5.

Fouling

1. conductivity hardness 280 μ S/cm 76mg/L

2. 가 , fouling 가

3.

- (1) Pilavachi, P. A. and Isdalem J. D., 1992, "European Community R&D Strategy in the field of Head Exchanger Foluing. Project", Fouling Mechanisms, Theoretical and Practical Aspects, pp. 13-20
- (2) Bott T. R., 1995, The Fouling of Heat Exchangers, Elsevier Science, New York
- (3) Kim W. T. and Cho Y. I., 2000, "Experimental Study of the Crystal Growth Behavior of CaCO3 Fouling Using a Microscope", Experimental Heat Transfer, Vol. 13, pp. 153-161.
- (4) Moody D. L., 1966," Method and apparatus for treatment of flowing liquids to control deposition of soild matter thereform", U. S. Patent number 3,228,878, Jan. 11.
- (5) Incropera F. P. and Dewitt D. P., "Fundamentals of Heat Transfer", John Wiley & Sons, New York.