† * **

Turbine Performance Degradation due to Blade Surface Roughness

Il Young Park, Yong Il Yun, Seung Jin Song

Key Words: Axial turbine(), Rotating test facility(), Roughness(), Stator (), Suction surface(), Performance(), Efficiency()

Abstract

This paper reports on the influence of blade surface roughness on turbine efficiency. The performance of a low speed one-stage axial turbine with roughened blade surfaces was evaluated. Sandpaper with equivalent sandgrain roughness (k_s) was used to roughen the blades. Efficiency (η/η_0) decreases by 4.5 % with sandgrain size of 400 μm on the stator suction surface.

 $T_{t,in}$: $T_{t,out}$: U $C_{\rm f}$ C_p : k_s : 가 α \mathbf{k}^{+} rms $lpha_{r\!m\!s}$ 1 β m $P_{s,in}$: $P_{s,out}$: Q R_a Re_c: R_z † E-mail: piy102@snu.ac.kr FAX: (02)883-0179 TEL: (02)880-1701 **

Table 1 Real turbine blade roughness (by Bons (1)) 1. Variable Specification of real blade Characteristic Foreign deposit (SS/MS/TE) (Situation) $R_a (\mu m)$ 34.16 $R_z (\mu m)$ 174.01 α_{rms} (deg) 20.6 가 가 R_z / θ 2.98 . Bons GE, Solar Turbines, k_s (μ m) 181 Siemens Westinghouse, Honeywell 100 $k^+= k_s (u /) = Re_k$ 322 가 가 (foreign (6) deposits) (suction $\mathbf{Bons}^{(7)}$ surface) leading edge (pressure surface) Kind⁽⁶⁾ , Bammert (5) k_s 가 trailing edge , 1 (1) 가 가 가 가 , Bammert Sandstede 가 가 가 2. 가 가 .(2) Bons (1),(7) , $Bons^{(7)}$ 가 (equivalent $\alpha_{\mathit{rms}}^{(9)}$.(3) $k_{s} \\$ sandgrain roughness, k_s) 가 $k_s/l \ = \ 2.8{\times}10^{\text{-}3}$ Forster ((1))6% Bammert $k_s \! / l \ = \ 10^{\text{-}3}$ Sandstede $k_s = -0.0261\alpha_{rms} + 0.0138(\alpha_{rms})^2$ $k_s/l = 10^{-2}$ 14% 6% (1) 4 1 $k_s \\$ (1) (5) Table 1 Bons⁽⁷⁾가 . Table 1 $\,k_s\,$ 가 $(Re_c=2\times10^6)$ Kind $(Re_c = 4 \times 10^5)$ $(1=96.01\,\text{mm})$

가

가

Tabla	2	Tact	hlada	specification
1 able	4	1681	braue	Specification

Variable	Stator	Rotor
Chord (mm)	96.01	41.04
Aspect ratio (h/c)	0.715	1.672
Hub Dia. (mm)	562.8	560.0
Tip Dia. (mm)	700.0	697.2
Tip Clearance (mm)	1.4	1.4
# of blades	38	70
Re _c	4.1×10 ⁵	2.2×10 ⁵

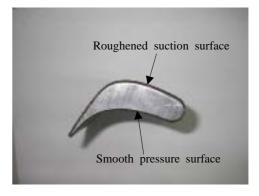
Table 3 k_s values of each surfaces

Section	Pressure surface (µm)	Suction surface (µm)
Stator	1051.18	525.92
Rotor	821.43	410.72

Nikuradse k^{\dagger} (roughness Reynolds number) k_s (2))

$$k^+=rac{ku_{ au}}{ extstyle }=Re_c\Big(rac{k_s}{C}\Big)\sqrt{rac{C_f}{2}}$$
 (단, $u_{ au}=\sqrt{rac{ au_w}{
ho}}$) (2)

, k⁺


 $\cdot k^{\scriptscriptstyle +} < 5$: (smooth)

 $\begin{array}{l} \cdot \ 5 < k^+ < 70 \ : & \text{(transitionally rough)} \\ \cdot \ k^+ > 70 \ : & \text{(fully rough)} \end{array}$

, k⁺가 322

 $\begin{array}{ccc} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$

$$C_f = \left[2.87 + 1.58 \log\left(\frac{x}{k_s}\right)\right]^{-2.5} \tag{3}$$

Fig. 1 Top view of blade surface attached with sandpaper

Fig. 2 Side view of blade surface attached with sandpaper

(2) (3)

$$k^{+} = Re_{c} \left(\frac{k_{s}}{C}\right) \sqrt{\frac{\left[2.87 + 1.58log\left(\frac{C}{k_{s}}\right)\right]^{-2.5}}{2}}$$
 (4)

 k^{+} k_{s}

 $\begin{array}{ccc} \text{(4)} & & & \\ & \text{Table 2} & & \text{Re}_c \end{array}$

Bons $k^{\dagger}(=322) \qquad (4)$, Newton's Method $k_s \qquad \qquad 7 \label{eq:ks}$ Table 3

. Table 3 k_s

71 400..... (#40)

가 400µm (#40)

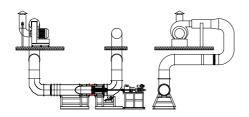


Fig. 3 Schemetic of rotating facility

Fig. 4 The test section

 $\mu \text{m}) \qquad (4) \qquad \qquad k_s (=400$ $\qquad \qquad , \qquad \qquad 100 \, < \, k^{\scriptscriptstyle +} \, < \, 200$ $(\qquad : \, k^{\scriptscriptstyle +} \, = \, 145, \qquad : \, k^{\scriptscriptstyle +} \, = \, 110) \qquad \qquad ,$

·

Fig. 1, Fig. 2

.

,

3.

(control actuator) .

Table 2 .

Table 4 Sensor accuracy

Sensor	Accuracy	Comments
Pressure transducer 1	± 0.20 %	Test section pressure
Pressure transducer 2	± 0.19 %	Flowmeter pressure
Torquemeter		Torque
Torquemeter Amplifier	± 0.30 %	
Thermocouple	± 0.37%	Temperature

4.

4.1

Table 4 (Uncertainty) Kline McClintock

, 95% 1.4% ···

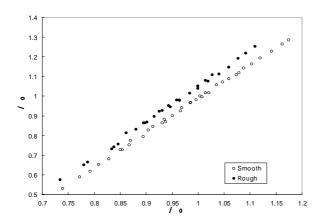
4.2 가 가

 $\begin{array}{ccc} & & & \\ C_x & U & & \\ & & \end{array}.$

 $\phi = \frac{C_x}{U} \tag{5}$

Q .

 $\Psi = \frac{Q_{\omega}}{\dot{m} U^2} \tag{6}$


2가 . , 가

(smooth regime),

 $(k_s/l = 4.16 \times 10^{-3})$

Fig. 6 Fig. 8 . Fig. 6

.

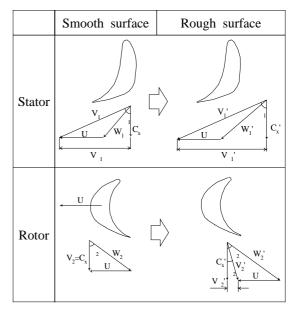
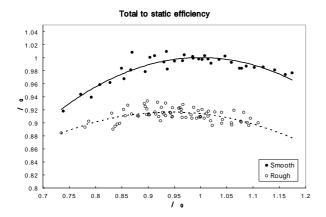


Fig. 6 Work coefficient coprarison for smooth and rough(k⁺=110) surfaces

$$Qw = \dot{m}U(V_{\theta 1} - V_{\theta 2}) = \dot{m}UV_{\theta 1} \tag{7}$$

$$\Psi = \frac{Qw}{\dot{m}U^2} = \frac{V_{\theta 1}}{U} = \frac{C_x tan\alpha_1}{U} = \phi tan\alpha_1$$
 (8)

Bammert Sandstede⁽²⁾ 가 (displacement thickness) 가 . 가


Fig. 7 Velocity triangle comparison for smooth and rough (k⁺=110) surfaces

$$V_{\theta 2} \left(= - \, C_x' t \, a n_{\rm G_2} \, \right) \\ . \tag{'}$$
 (6), (7) (9) .

$$\Psi' = \frac{C_x'(\tan\alpha_1 + \tan\alpha_2)}{U} = \phi'(\tan\alpha_1 + \tan\alpha_2) \tag{9}$$

$$(Q \times w)$$
 total to static (10))

$$\eta_{ts} = \frac{Qw}{\dot{m}c_p T_{t,in} \left(1 - \left(\frac{P_{s,out}}{P_{t,in}}\right)^{\frac{\gamma - 1}{\gamma}}\right)}$$
(10)

Fig. 8 Efficiency comparison for smooth and rough (k⁺=110) surfaces

(η_0) . Fig. 8 (fully rough regime) , η/η_0 4.5%

5.

 $400 μm ~(k_s/l ~~4.16 \times 10^{-3})$ $\eta/\eta_0 ~~4.5\%$.

- (1) Bons, J.P., Taylor, R.P., McClain, S.T., Rivir, R.B., 2001, The Many Faces of Turbine Surface Roughness, ASME J. Turbomachinery, 123, 739-748.
- (2) Bammert, K., and Sandstede, H., 1980, Measurements of the Boundary Layer Development along a Turbine Blade with Rough Surfaces, ASME J. Eng. Power, 102, 978-983.
- (3) Schlichting, H., 1979, Boundary Layer Theory, 7th Edition, McGraw-Hill, New York.
- (4) Forster, V.T., 1967 Performance Loss of Modern Steam-Turbine Plant Due to Surface Roughness, Proc, Inst. Mech. Engrs. 1966-67, 181, 391-405.
- (5) Bammert, K., and Sandstede, H., 1972, Measurements Concerning the Influence of Surface Roughness and Profile Changes on the Performance of Gas Turbine, ASME J. Eng. Power, 94, 207-213.
- (6) Kind, R.J., Serjak, P.J., Abbott, M.W.P., 1998, Measurements and Prediction of the Effects of Surface Roughness on Profile Losses and Deviation in a Turbine Cascade, ASME J. Turbomachinery, 120, 20-27.
- (7) Bons, J.P., 2002, St and Cf augmentation for real turbine roughness with elevated freestream turbulence, ASME J. Turbomachinery, 124, 632-644.
- (8) Yong-sang Yoon, 2001, Axial Turbine Performance Evaluation in Rotating Facility, Journal of Fluid Machinery, vol 4. No.3, 46-52.
- (9) Acharya, M., Bornstein, J., and Escudier, M., 1986, Turbulent Boundary Layers on Rough Surfaces, Exp. Fluids, 4, 33-47.
- (10) Nikuradse, J., 1933, Laws For Flows In Rough Pipes, VDI-Forchungsheft 361, Series B, Vol. 4.
- (11) Kline, S.J., and McClintock, F.A., Describing Uncertainty in Single Sample Experiments, Mechanical Engineering, January 1953, 3-8.
- (12) Denton, J.D., 1993, Loss Mechanisms in Turbomachines, ASME J. Turbomachinery, 115, 621-656.