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Abstract

In steel-making processes of iron and steel industry, the purity and quality of steel can be dependent on the
amount of CO contained in the molten metal. Recently, the supersonic oxygen jet is being applied to the
molten metal in the electric furnace and thus reduces the CO amount through the chemical reactions between
the oxygen jet and molten metal, leading to a better quality of steel. In this application, the supersonic oxygen
jet is limited in the distance over which the supersonic velocity is maintained. In order to get longer
supersonic jet propagation into the molten metal, a supersonic coherent jet is suggested as one of the
alternatives which are applicable to the electric furnace system. It has a flame around the conventional
supersonic jet and thus the entrainment effect of the surrounding gas into the supersonic jet is reduced, leading
to a longer propagation of the supersonic jet. The objective of the present study is to investigate the
supersonic coherent jet flow. A computational study is carried out to solve the compressible, axisymmetric
Navier-Stokes equations. The computational results of the supersonic coherent jet are compared with the
conventional supersonic jet.

3-5%

(entrainment) ,

*% )

E-mail : kimhd@andong.ac.kr
TEL : (054)820-5622 FAX : (054)823-5495

2139

&™)



2003

U e
op 0
oo (o) &)
s
; i 0 0 0 ou, Ou;
(a) Conventional supersonic jet “ou)+—(puu.)= i
at(pul) ) J(pul J) 6Xj [’u(axj 6Xi (2)
y I
_ 02, 0u) o i[_ ““j
@O) ox \ 3% ax ) ax Tax, P
e
. 0 0
(b) Supersonic coherent jet a(pE)Jr 87(/0“. H )=
Fig. 1 Schematics of a conventional supersonic jet and 0 N M, | OT ‘U ( ) 3)
. . N _—— AT
a supersonic coherent jet 8Xj Pr, ) ox i \bij Jogs
Fig.1
4 Runge-Kutta
coherent . Fig.1 (a) PDF
(Probability Density Function)
(11-12)'
. Fig.1 (b)  coherent o/ - P _ P of
= (pf )+ (pu, )= 222 @
ot oX, ox; \ o, OX,
. g(pf’2)+i( if’2)=
coherent , Mathur ot OX;
©8) — 2 (5)
12 £ PR
coherent i &af +C.u i -C p_f’2
. Brhel® X | oy X X, "k
, f (mixture fraction)
. Zi - Zi ox .
coherent f= : . Zi i
Zi,fuel _Zi,ox
coherent 0X fuel
. , Ot Cg, Cd
coherent 0.7, 2.86, 2.0 (12)
G puf’
. 2 _
, Navier-Stokes ,OU,'F - My OF ©6)
k-& . Oy aXi
(10)
2. 1
$ = [4(f)p(f)df ™)
coherent 0
k-
Navier-Stokes Natural gas
CH4 ’ 02

2140



2003

Dfuel | De | DOX

!

Oxygen

Natural Gas

]

Main Gas

(a) Coherent nozzle

(b) Cross-sectional nozzle used in experiments
Fig. 2 Schematics of the supersonic coherent nozzle
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Fig. 5 Static temperature contours of the supersonic
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