Removal of Hydrogen Sulfide by Immobilized *Thiobacilli* onto PVP Jin-Myeong Cha, Young-Seon Jang, In-Wha Lee¹, Han-Cheol Koh², Gwang-Yeon Lee^{2,3}, and Don-Hee Park³ B&E Tech Co, Ltd, Venture Center, Gwangju university 503-703, Korea ¹Dept. of Environmental Engineering, Chosun University 501-759, Korea ²Dong-A College, Chonnam 526-872, Korea ³Faculty of Applied Chemical Engineering, Cnonnam National University, Gwangju 500-757, Korea TEL: +82-62-530-1841, FAX: +82-62-530-1849 ## Abstract A newly *Thiobacillus* sp. IW, *Thiobacillus denitrificans*, and *Thiobacillus thiooxidans* capable of degrading sulfur-containing odour, was immobilized onto PVP to remove H₂S using a bubble column bioreactor. *Thiobacillus* sp. IW is exceptionally fast growing compared with other sulfur-oxidizing bacteria of *Thiobacillus denitrificans* and *Thiobacillus thiooxidans*. Three kinds of *Thiobacilli* could oxidize thiosulfate to sulfate as the final produc. We conclude that sulfate concentrations accompanied by the increase in the cell growth increased and thiosulfate concentration increased. The efficiency of H₂S removal was 6-18 times faster than those of *Thiobacillus denitrificans* and *Thiobacillus thiooxidans*. According to these results the growth of *Thiobacillus* sp. IW is the fastest compared with other *Thiobacilli*. The faster the cell growth, the faster H₂S removal. The removal efficiencies of 99% were observed in the range of inlet H₂S concentration from 200 to 2200ppm at a constant gas flow rate 19.2L/min. *Thiobacillus* sp. IW immobilized onto PVP showed better removal performance. Regenerated immobilized PVP did not show marked pH change during the course of experiment compared to fresh immobilized PVP. Therefore it is indicated that PVP, which lost activity, can be reused. ## 감 사 이 논문은 산업자원부 지역전략산업 석박사 연구인력 양성사업 연구비지원에 의하여 연구 되었으며, 이에 감사를 드립니다. ## References Altaf H. Wani, Richard M. R. Branion, Anthony K. Lau (1997), Biofiltration: A promising and cost-effective control technology for odors, VOCs and air toxics, J. Environ. Sci. Health A32(7), 2027-2055.