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Abstract: The new algorithm for higher performance of dynamic PIV has been
proposed. Present study considered mathematical basis of PIV analysis for
multiple-time-step images and it enables us to analyze the high time-resolution PIV,
which is obtained by dynamic PIV system. Conventional single pair image PIV
analysis gives us the velocity field data in each time step but it sometimes contains
unnecessary information of target flow. Present technique utilize multi-time step
correlation information, and it is analyzed
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1. Introduction

Recent developments of instruments for image measurement are remarkable. It is not so difficult
to obtain the multi-mega pixels or the ultra-short time interval successive images. The compact
and high power pulse laser is regularly used, and conventional PIV algorithms work steady enough
for ordinary applications. Those significant equipments have further abilities not only for the
higher accuracy and resolution but also for the development of another dimension of measurement.
For example, the successive time images with over 1KHz sampling frequency have enough time
resolute for ordinary scale of flow, but the image set will have further information such as
acceleration or fluctuation of smaller flow scale. Simple accumulations of conventional PIV results
enable us to obtain such information by applying finite difference or FFT on the measured velocity
filed. But it will have limitation in accuracy and resolution caused by the digital resolution limit,
the accuracy of finite difference and the accumulation of residual error. It has been required that
applicable algorithms for higher potential PIV images is to be developed, and it will open next stage
of PIV measurement.

One of the authors has established the analytical basis of PIV measurement (Nishio, 2001), and
it has contributed to understand the evaluation of PIV image mathematically. The analytics of PIV
measurement enables us to evaluate the PIV image appropriately and it indicates how we can
extend the principle of PIV analysis. In the present paper, the basis of analytics for PIV
measurement are summarized, and the applications for multi-time-step PIV images were
considered. Asymptotic approaches to obtain the higher order solutions were considered, and
innovative algorithms were proposed.



2. Constraint equation and evaluation indexes

2.1 Basic analytics of PIV

The basic analytics of PIV is summarized in this section, and it is the basis for the extended
algorithms for multi-time-step PIV. Simplifying mathematical expressions and discussions, the

luminance function is standardized by Eqs.(1),(2),(3). f shows the luminance of original image

and S shows the area of target space such as correlation window. / and o show the mean value
and deviation of luminance inside the target space, and f shows the standardized luminance

function. The standardized luminance enables us to eliminate the external effects such as the
non-uniformity of illumination or the dependency of image contrast.
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The standardization is already employed in the original principle of correlation method
(Kimura, 1987), but it has not been used in the constraint equation of gradient method. It would
largely contribute to the robustness of analysis for the change of image condition such as contrast
or illumination. All the mathematical expressions appeared in the following sections will use the
standardized luminance, but the essential of the analytical discussion does not change.

As it is described in the previous paper (Nishio, 2001), the constraint equation of image
displacement is expressed by a differential equation shown by Eq.(4). Figure 1 shows a schematic
view of the transport of luminance of image. The luminance is transported by the convection, and
it will be changed by external factors such as non-uniform illumination field. The differential
equation is obtained by applying the limitation Ar — 0 on the finite difference between rand ¢+ Ar.
The external effects are neglected here as it can be discussed separately.
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Fig.1 Schematic view of the transport of particle image luminance

The constraint equation is defined at single point in spatio-temporal space. It can be applied to
the displacement when the luminance derivative is effective and that can be realized when Ar is
small. However, it cannot be satisfied always, and much wider dynamic range ha been required.
As Eq.(4) is satisfied everywhere in the spatio-temporal space in visualized flow field, the integral
form of constraint equation can be obtained as shown by Eq.(5). s, shows a path line that is

formed in a period of [t,f+ At], and the result of integral can be expressed by the luminance at the
both end of path line.
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The integral style constraint equation expresses the simple fact that the luminance does not
change when we can track the particle path correctly. (Kaga, 1992) The similarity of pair image
evaluated by a norm of constraint equation as shown by Eq.(6).
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Fig.2 Schematic view of luminance transportation of PIV image.

Equation (6) shows the principle of conventional correlation method, and the relationship with
the ordinary correlation coefficient is shown by Eq.(7). As the luminance function is standardized
by Eq.(3), the maximum correlation gives minimum value of present evaluation index.
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2.2 Extension for the multi-time-step PIV

Multi-time-step PIV images have further information than the velocity field. Figure 3 shows
the schematic view of multi-time-step images. The vectors illustrated in Fig.3 show the
displacement vector at target point (x, y), and it will be changed when the flow field is unsteady.

The pair images at [¢,,#; +1] give a velocity vector by applying the conventional PIV analysis. The

vectors shown here indicate the relationship between closest times, but it can be understood that
they give the gradient at each point on a surface that covers all path lines in spatio-temporal space.
Then the object of the multi-time-step PIV analysis is to obtain the surface where the constraint
equation is satisfied everywhere on it.

1

Fig.3 Schematic view of multi-time-step PIV images in accelerated flow field.



The minimum norm of the constraint equation gives optimum surface in spatio-temporal space,
and it has been employed by gradient method. Equation (8) gives the analytical expression of
evaluation index for the differential form .of constraint equation. S and T show the area and
period of measurement target, and the center of the area is fixed in space here.
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Conventional integral form of evaluation equation can be extended so as to apply it to the
multi-time-step PIV images. When the path lines at target point (x, y) and time ¢ are expressed
by s(t,x,y), Eq.(9) can be employed for the evaluation of multi-time-step images. When we can find
the optimum set of path lines s(7,x, y), they enable us to obtain the unsteady flow field.
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The unknown parameters in Eqs.(8); (9) are the velocity field such as vectors or path lines and
they are the function of (t,x,y). Usually the velocities in the correlation area are treated as

uniform, but we can find another possibilities here to obtain further information.

3. Asymptotic approach for higher-order solution

The constraint equations and the evaluation indexes are described by means of differentiations
and integrals of luminance function and they are defined at points or on line. In actual
measurement, the differentiations and integrals are estimated by finite difference and numerical
summation respectively. When we need to consider the higher order terms, all the equations
cannot be solved at a time because the equations becomes non-liner. Asymptotic approaches enable
us to get the higher-order information of flow field conventionally. The regular asymptotic
algorithm has been applied on both the gradient method and the correlation method to achieve best
performance with multi-time-step images.

3.1 Asymptotic approac]z for gradient method
Finite difference form of constraint equation

Present asymptotic approach assumes the form of solution with a regular series of functions. When
the time interval of target image pair is represented with Ar, the displacements of particle image
are expressed by Eqs.(10), (11) using the target point velocity (u,vy) and its derivatives.
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The differential form of constraint equation shown by Eq.(4) consists of differentiations of
luminance function and velocity field information. The differential form equation can be obtained
by considering the finite difference of luminance function by assuming the limitation Ar —0.
Substituting Eqs.(10), (11) into the Taylor’s expansion of luminance function, following basic
relationship between the luminance function and velocity field can be obtained.
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Equation (12) contains following unknowns eight unknowns, (ug,du/dt,du/dx,du/dy,vq,0v/ot,
dv/dx). The finite form constraint equation can be derived by substituting Eq.(12) into Eq.(4),
which expresses the fact that the luminance at (¢,x,y) and (r+Af,x+Ax,y+Ay) are same when

external factors such as illumination and scattering characteristics change are negligible. As
Eq.(13) is expressed until second-order terms, we can find several non-liner parts such as ug -du/dx,

v - Ov/ox - etc.
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Partial linear solution

(13

The spatio-temporal method has used least-square approach for first-order solution of constraint
equation of gradient method. When the time interval of pair image is sufficiently small, the terms
higher than second-order can be negligible. Then the constraint equation contains only two
unknowns (g, V), and the equation becomes linear. Then the least-square method can be directly

applied, and the following accumulated equation can be obtained. Equation (14) can be applied on
the region where the velocity field is uniform in time and space.
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The first step to the higher-order solution can be achieved by a linerizing approach similar to
the first order solution. When the coupling between the velocity and its derivatives can be
negligible, the constraint equation can be linearized as shown in Eq.(15).
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As the coupling is ignored, the parameters Af,Ax,Ay can be regarded as independent. Then

the solution of Eq.(15) can be obtained by applying the least-square method. The cost function of
the least-square method can be expressed by Eq.(16). Then the solution can be obtained by solving
the linear equation array as same a Eq.(14).
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Present approach actually improves accuracy of analysis by employing higher order fitting
function for the solution plane (Fujita, 2003). Figure 4 shows the schematic view of the fitting
function of least-square method. Usual first-order approach gives o-order solution, the uniform
velocity field in spatio-temporal space, and present second-order approach enables us to obtain the
first-order solution for the derivatives of velocities. However, the when we consider the application
on the dynamic PIV system, original second-order constraint equation should be considered.
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Fig.4 Solution planes of partial linear solutien.

Asymptotic solution of non-liner constraint equation

The second-order constraint equation shown by Eq.(13) represent its non-liner characteristics as
described before. The solutions of non-liner equation can be obtained by numerical approach such
as Newton method, but the iteration approach is not practically applicable for actual image
analysis, which requires heavy CPU time. Asymptotic approach to the non-liner equation enables
us to obtain the solution with liner equation array.

Equation (13) shows the finite difference form of constraint equation. The first-order terms
shows the same constraint equation of usual spatio-temporal derivative method, and the
second-order terms shows the contribution of derivatives of velocity. When we can assume that the
derivatives are smaller-order terms of the velocity, the constraint equation will balance in each
orders as shown by Eqs.(17), (18).
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Fig.5 Schematic view for the asymptotic approach for the multi-time-step PIV.

Equation (17) shows exactly the same form of original differential style constraint equation
shown when the uniform velocity field is assumed inside the correlation space. Equation (18)
includes the first and second order of luminance derivatives, the averaged velocity (ug,vo) and the

first order derivatives of velocity. When Eqs.(17),(18) are balanced independently as they are



different order, initially we can determine (ug,v) from Eq.(17). After we determine (ug,vy) with
first-order equation, we apply it on Eq.(18). As (u,,vy) has already determine and the derivatives

of velocity can be regarded as a constant value in the target region, Eq.(18) gives lst-order
derivatives of velocity field in time and space.

3.2. Asymptotic approach for cross-correlation method

The asymptotic approach is also available for the integral form of constraint equation. The
correlation between the image at time ¢ =¢, and t=¢,,, can be express by Eq.(19), that shows an

evaluation index on a volume in spatio-temporal space. The evaluation index C,, shows the

similarity of pair image between two particular times, but multi-time-step PIV requires to evaluate
total information in time and space.
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The total evaluation index for multi-time-step images can be given by Eq.(20). Every
combination of images in multi-time-step is covered with the index. The most primitive way of
present approach is to select M =1 that means we consider the relationship between the closest
times. It seems to have no difference from the accumulation of conventional PIV technique, but it
is different as we evaluate all the image data together. Figure 6 shows an example of
time-sequence of correlation map. Each correlation map was obtained by analyzing the VSJ
standard image. The minimum evaluation index gives optimum path line shown by Eq.(21).
Arbitrary path lines is able to be the candidates for the solution, but it is not easy to determine
without parametric consideration.
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Fig.6 Correlation maps obtained by analyzing VSJ standard image.
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The path line can be expressed by a Taylor’s series with Ar. When we the displacement is
written by vector form §(Af) = (Ax,Ay), Eq.(22) shows Taylor’s series of path lines where po po
P@ show the averaged velocity vector and its temporal derivatives.
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Substituting Eq.(22) into Eq.(19), the evaluation index expréessed by Eq.(23) is able to be
obtained. The evaluation equation includes finite number of parameter, and it enables us to obtain
the optimum path line by determining the parameters one by one. The case of K =0 shows the
conventional correlation method, and it gives the averaged velocity in correlation volume in
spatio-temporal space. Considering the asymptotic approach as the same in the gradient method,
we can assume that the lower order solution can be used to analyze the higher order. Initially we

can find optimum fo by considering whole the time'ste‘b images without consideration of

higher-order terms. After we determine P

, we are able to find the optimum combination of
F©@ P0y by considering Eq.(20) again. 'The most primitive way is to select M =1 in Eq.(19) that

means we consider the relationship of pair images side by side, but there remains much possibility
to consider the images with larger number of M , and non-uniform time interval.
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The spatial derivatives of velocity field does not appear positively in Eq.(21), but it could be
included in the variance of velocity vectors \’z),( (x,y). The variance of velocity vector in space is also
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able to be expressed by Taylor series with (Ax,Ay), and it can be evaluated in the integral through

a correlation plane as same in Eq.(21).

6. Conclusion

Asymptotic approach for the analysis of multi-time-step PIV was proposed. The analytical basis of
measurement shows how we can extend the PIV algorithms so as to apply multi-time-step images.
Both the differential and integral approaches are considered to obtain the higher order solutions.
Present approach enables us to obtain further information of PIV image appropriately. The
advantage of present approach will contribute not only to the robustness, but also to keep
consistency on all the results obtained from the multi-time-step images.
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