DMLS(Direct Metal Laser Sintering) 공정을 이용한 기능성 신발부품 쾌속금형 제작기술

2004. 11. 30.

홍경호 (㈜한국프라마스) 차백순(한국생산기술연구원 부천디지털금형센터)

1

Contents

- 1. Introduction of framas
- 2. DMLS Process
- 3. Application Example
 - Functional Shoe Components
- 4. Conclusions

About framas Global

Framas Global has created his own new perspectives

Framas general news:

- > Asia Wide Production Facilities
- > global thinking
- > <u>scientific</u> <u>molding</u> <u>Technologies</u> (smT)
- > built in "advanced innovation Technology (aiT)
- > global process and procedure sharing
- > global material sourcing
- > global ideas and innovation / brainstorming
- > leading worldwide manufacturer in our operating field

framas is an affiliated of worldwide trading

Framas Global

Country	Established	Employee	Machine
Germany	1948	120	61
Korea	1988	180	56
Busan R&D	1996	35	6
Indonesia	1993	480	82
China (D.G)	1998	560	105
China (F.Z)	2002	120	30
Vietnam	2000	316	44
Total		1,804	384

Why RT for Prototype Injection Mold?

a. Advantage;

- > Shorten Mold Lead-time (depend on Design)
- > Save Mold Cost (in case of small & complicated mold)
- > Compatibility with other processes
 - → parts can be milled, drilled, welded, EDM, etching, etc....
- > Very high geometric flexibility
 - → e.g. free-forms, deep slots, undercut, etc...
- > High productivity and Low personnel costs
- > Easy to polish the surface

b. Disadvantage;

- ➤ Limitation of core size (Max. 250 x 250 mm with current Machine)
- > One side surface which is met with support is very rough & hard to trimming: In-Lay core
- > Need to improve the parting surface in order to fit tightly in assembly
- Owing to DirectTool (without graphite model for EDM), it's hard to modify RT mold if it's essential to changes once completed mold.

7

Rapid Tooling Methods

Two Tooling approaches:

- 1. Indirect approach: Soft tooling ▷
 - •Ероху
 - Series of 10 500 parts

2. Direct approach: Hard tooling

Series up to 10.000 parts

SLS Rapid Tooling

Process Chain

- data generation data preparation DMLS process processing application
- part or tool design in CAD
- slicing etc. for DMLS process
- part building
- infiltration, polishing etc.
- e.g. tooling

Source : /EÖS/

DMLS(Direct Metal Laser Sintering) - Process

Principle

- Laser-induced liquid-phase sintering
 - mixture of low- and high-melting point (m.p.) metal powders
 - high m.p. component provides strong matrix
 - low m.p. component is melted by laser energy and binds matrix
 - expansion reaction compensates for sintering shrinkage
 - solidification results in stable metal structure

DMLS-Process

Layer Elements

- Layers contain only horizontal and vertical surfaces

Layer elements: Upskin = horizontal surface

13

DMLS Materials

Summary of Important Parameters

	DM 20	DS 20
Typical achievable part accuracy (µm)	± 50	± 50
Minimum wall thickness (mm)	0.6	0.7
Remaining porosity (minimum, %)	8	2
Tensile strength (MPa)	400	600
Hardness (HB)	110	220
Surface roughness (µm) without post-processing	R _a 9 R _z 40 - 50	R _a 10 R _z 50
Surface roughness (µm) after shot-peening	R _a 3 R _z 15	R ₂ 4 R ₂ 15
Coefficient of thermal expansion (10 ⁻⁶ /K)	18	9
Thermal conductivity @ 25°C (W/mK)	25	13
Maximum operating temperature (°C)	400	800

DM20: bronze-based metal powder (Max. particle size=20µm)

DS20: iron-based metal powder

Overall RT Mold construction

- Test Components
 - > Sealing Basf C60A
- Mold Construction
 - > Moveable (In-Lay) Core Construction

17

Overall RT Mold construction

- Test Components
 - > Top & Bottom plate EMS L20LF/ L20G
- Mold Construction
 - > Standard 2 cavities injection mold

Sealing RT Mold In-lay core Upper core In-lay core In-lay core Injected Part

Overall RT mold Trial details

- a. RT mold Quantity: Total 2 sets (5 days)
 - > Sealing Mold 1 set
 - √ Upper core : 1 ea
 - ✓ bottom core : 1 ea
 - ✓ In-Lay core : 2 ea (Thickness : 3mm & 2mm)
 - > Top & Bottom plate Mold 1set
 - ✓ Upper core : 1 ea
 - ✓ Bottom core : 1 ea
- b. Mold Lead-time; 8 10 days (in general with normal shape)
- c. Mold Cost; Total: U\$ 4,400
 - ❖ Sealing Mold : U\$ 2,500
 - ❖ Top & Bottom plate Mold : U\$ 1,900
 - *** The cost are excluded Mold base & Assembly cost.
 - *** RT cost should be different with core volume and sizes.

Evaluating - texture/ coating/ welding/ durability ...

a. Texture

>In general, Texture is possible.

>Need the customized special textures process for RT.

23

Evaluating - texture/ coating/ welding/ durability ...

b. Teflon Coating

>In general, Teflon Coating is possible.

>And there are no distortion after coating.

➤For reference, the RT material melting point is 400°C and the Teflon need 280° - 350°C in coating process.

Evaluating – texture/ coating/ welding/ durability ...

c. Chromium Coating for polished surface

➤ In general, there are no issues.

25

Evaluating – texture/ coating/ welding/ durability ...

d. Welding

➤In general, there are no issues.

Evaluating – texture/ coating/ welding/ durability ...

e. Durability

- ➤in general, there are no issues.
- ➤So far framas have produced about 500 600 pcs without any distortion.
- ▶and based on this data, we could expect 5,000 pcs as guideline from Maker

27

Conclusions

- 1. Time & Cost saving potential exits (depends on design).
- 2. Evaluating Results:
 - >Texture is possible.
 - >Teflon costing is possible (without distortion).
 - >Chromium coating for polished surface is possible.
 - >Welding is possible.
 - ➤Durability; 500-600 pcs without any distortion (5,000 pcs are expected)