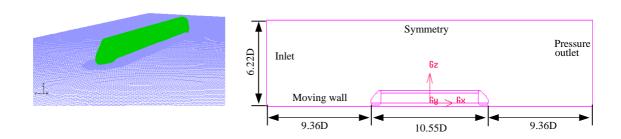
Analysis of aerodynamic characteristics on the Korean Tilting Train Express

*	*	**	* * *	
Su - Hwan Yun	Tae - Yoon Kim	Hyeok - bin Kwon	Dong - Ho Lee	
	ABSTR	RACT		-
Numerical analysis of aerody	namic characteris	stics was differentl	v performed according	to
the running situation of the K				
for an improvement in efficie	_			
analysis of Non - tilting case,	•			
result, the aerodynamic drag	_			
However, pressure contour u		_		
gap between a train and the	_			
pressure worked on the side				
occurred alternately and affect	• •		•	
the maximum attraction was g	•			
tunnel a large variation of pre	_	-		
this study would be good d		•	stic on TTX and prov	ide
important information to judgn	nent of running sa	fety.		
				-
1.				
()				
•				
				,
		•	,	
	,			
*	,			
*	,			

```
(TTX)
                                                                                                                                     model
                                  Fluent6.0(
                                 [2]
      (TTX)
      2.
      2 .1
                   3D incompressible Navier - Stokes (1)
turbulence modeling
                                                                                  Segregated - implicity,
Coupled - implicity
                                   Solver
                                                                           .[6]
                                           \frac{\partial}{\partial t} \int_{V} W \, dV + \oint [F - G] \cdot dA = \int_{V} H dV
                  W = \begin{cases} \mathbf{r} \\ \mathbf{r} u \\ \mathbf{r} v \\ \mathbf{r} w \end{cases}, \quad F = \begin{cases} \mathbf{r} v \\ \mathbf{r} v u + p \hat{i} \\ \mathbf{r} v v + p \hat{j} \\ \mathbf{r} v w + n \hat{k} \end{cases}, \quad G = \begin{cases} \mathbf{t} \\ \mathbf{t}_{xi} \\ \mathbf{t}_{yi} \\ \mathbf{t}_{zi} \end{cases}, H=body force
                       m{r}: density , m{u}: velocity , p : pressure , m{t} : viscous stress tensor
      2.2
      (1)
                                                                                    14.5m, 36m(2), 54m(3)
               (TTX)
                                                                                                                                Tetrahedral
/Hybrid mesh scheme
                                                                                                                         (TTX)
                                                                                                                                          model
      (600m)
                                                                                     (36m, 54m)
                                                        (14.5m)
                                                                                                                                    1.
36m
                                                                        (D=3.417m)
                                                                                                                             0.2D(0.7m)
         Skirt
                                        0.112D(0.38m),
```


,

1. , Inlet 50m/s(180km/h) 50m/s(180km/h)

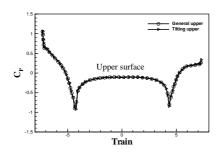
가 moving wall

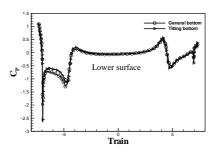
1. Case

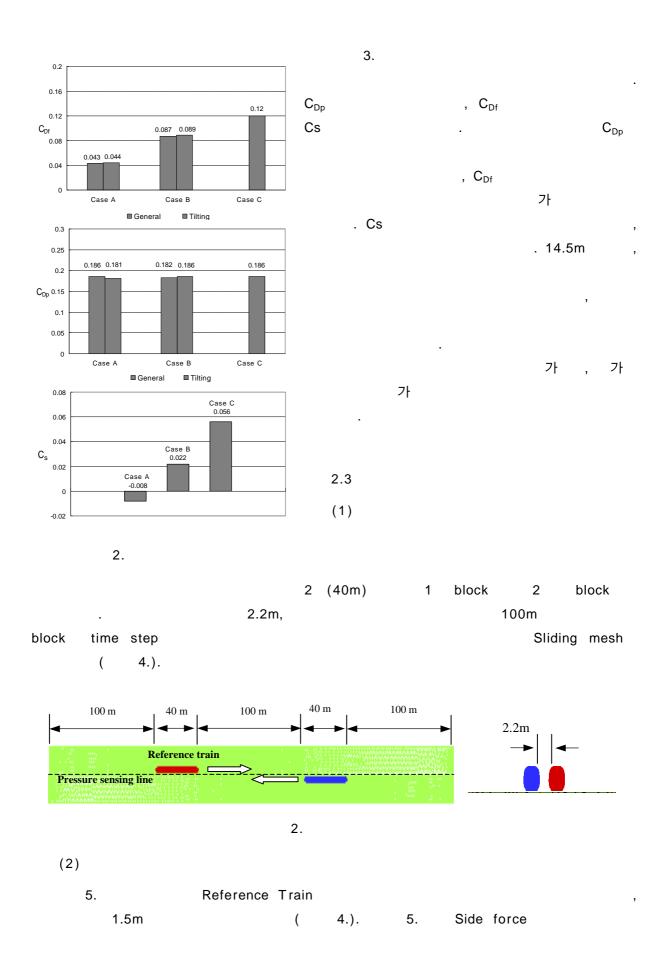
	State	Train length(m)	Radius of curvature(m)
Case A	General	14.5	0
	Tilting	14.5	0
Case B	General	36	0
	Tilting	36	600
Case C	Tilting	54	600

1.

(2)

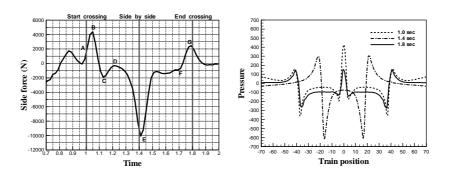

2. 14.5m (upper surface)


가


[1].

upper surface Cp .

가 . 가 .

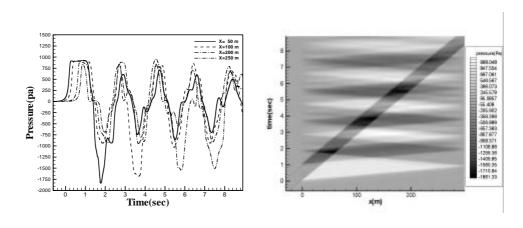

```
가
                가
                                         2.).
                                                  В
                                                           가
    (A - B).
                                                                 가
    Е
              가
                           가
                                             가
                                                       (B-E).
                                                                   가
                                                                   (E-F).
        가
                                                             (F-G),
                                                                 (
                                                                       2.).
```

C - D

[3].

2.

A-B		가		
В-Е	가			
E-F	가			
F-G		가		


2. Side force history

2.4 가 , 가 ,

[2]. 6. 130Km/h 300m

6.

+900pa -1800pa . G7 300km/h , [2].

3. Pressure history X - T

" 2004 21 " "

- 3. Ogawa, T. and Fujii, K., "Numerical Investigation of Three dimensional Compressible Flows induced by a Train Moving into a Tunnel", Comp & Fluids Vol.26, No.6 pp. 565 585, 1997.
- 4. Ogawa, T. and Fujii, K., "Aerodynamics of high speed trains passing by each other", Comp & Fluids Vol.24, No.8 pp. 897 908, 1995
- 5. Fluent Inc., FLUENT & GAMBIT user's manual