Intuitionistic Fuzzy Ideals on A Distributive Lattice

Kul Hur, Hee-Won Kang and Hyeong-Kee Song
Division of Mathematics and Informational Statistics, and Institute of Basic
Natural Science Wonkwang University Iksan, Chonbuk, Korea 570-749
E-mail: kulhur@wonkwang.ac.kr

Abstract

We introduce the concepts of intuitionistic fuzzy ideals and intuitionistic fuzzy congruences on a lattice, and discuss the relationship between intuitionistic fuzzy ideals and intuitionistic fuzzy congruence on a distributive lattice. Also we prove that for a generalized Boolean algebra, the lattice of intuitionistic fuzzy ideals is isomorphic to the lattice of intuitionistic fuzzy congruences. Finally, we consider the products of intuitionistic fuzzy ideals and obtain a necessary and sufficient condition for an intuitionistic fuzzy ideals on the direct sum of lattices to be representable on a direct sum of intuitionistic fuzzy ideals on each lattice.

Key words and phrases: intuitionistic fuzzy filter, intuitionistic fuzzy ideal, intuitionistic fuzzy congruence.

0. Introduction

After the introduction of the concept of fuzzy sets by Zadeh [20], several researchers [9,15,17,18] have applied the notion of fuzzy sets to group theory. In particular, Yuan and Wu [19] have applied one to lattice theory.

In 1986, Atanassov[1] introduced the concept of intuitionistic fuzzy sets as the generalization of fuzzy sets. After that time, Çoker and his colleagues [7,8,11], and Lee and Lee[16] applied the notion of intuitionistic fuzzy sets to topology. Another researchers [3,4,12,13] applied one to group theory. In particular,
Burillo and Bastince [5,6], and Deschrijver and E. E. Kerre[10] introduced the concept of intuitionistic fuzzy relations and investigated some of its properties.

In this paper, we introduce the concepts of intuitionistic fuzzy ideals and intuitionistic fuzzy congruences on a lattice, and discuss the relationship between intuitionistic fuzzy ideals and intuitionistic fuzzy congruence on a distributive lattice. Also we prove that for a generalized Boolean algebra, the lattice of intuitionistic fuzzy ideals is isomorphic to the lattice of intuitionistic fuzzy congruences. Finally, we consider the products of intuitionistic fuzzy ideals and obtain a necessary and sufficient condition for an intuitionistic fuzzy ideals on the direct sum of lattices to be representable on a direct sum of intuitionistic fuzzy ideals on each lattice.

1. Preliminaries

We will list some concepts and results needed in the later sections.

For sets X, Y and Z, $f=(f_1,f_2):X\rightarrow Y \times Z$ is called a complex mapping if $f_1:X\rightarrow Y$ and $f_2:X\rightarrow Z$ are mappings.

Throughout this paper, we will denote the unit interval $[0,1]$ as I.

Definition 1.1[2]. Let X be a nonempty set.

A complex mapping $A=(\mu_A, \nu_A):X\rightarrow I \times I$ is called an intuitionistic fuzzy set (short, IFS) on X if $\mu_A+\nu_A \leq 1$, where the mapping $\mu_A:X\rightarrow I$ and $\nu_A:X\rightarrow I$ denote the degree of membership (namely $\mu_A(x)$) and the degree of nonmembership (namely $\nu_A(x)$) of each $x\in X$ to A, respectively.

We will denote the set of all IFSs in X as IFS(X).

Definitions 1.2[2]. Let X be a nonempty set and let $A=(\mu_A, \nu_A)$ and $B=(\mu_B, \nu_B)$ be IFSs on X. Then

1. $A \subseteq B$ iff $\mu_A \leq \mu_B$ and $\nu_A \geq \nu_B$.
2. $A = B$ iff $A \subseteq B$ and $B \subseteq A$.
3. $A^c = (\nu_A, \mu_A)$.
4. $A \cap B = (\mu_A \wedge \mu_B, \nu_A \vee \nu_B)$.
5. $A \cup B = (\mu_A \vee \mu_B, \nu_A \wedge \nu_B)$.
6. $\bigcup A = (\mu_A, 1-\mu_A)$, $\bigcap A = (1-\nu_A, \nu_A)$.

Definition 1.3[5]. Let $\{A_i\}_{i \in I}$ be an arbitrary family of IFSs in X, where $A_i=(\mu_{A_i}, \nu_{A_i})$ for each $i \in I$. Then

(a) $\bigcap A_i = (\wedge_{\mu_{A_i}, \vee_{\nu_{A_i}}})$.
(b) $\bigcup A_i = (\vee_{\mu_{A_i}, \wedge_{\nu_{A_i}}})$.

Definition 1.4[5]. $0_+ = (0,1)$ and $1_- = (1,0)$.

Definition 1.5[5]. Let X and Y be nonempty sets and let $f:X\rightarrow Y$ be a mapping. Let $A=(\mu_A, \nu_A)$ be an IFS in X and $B=(\mu_B, \nu_B)$ be an IFS in Y. Then

(a) the preimage of B under f, denoted by $f^{-1}(B)$, is the IFS in X defined by:

$$f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\nu_B)),$$

where $f^{-1}(\mu_B) = \mu_B \circ f$ and $f^{-1}(\nu_B) = \nu_B \circ f$.
(b) the image of A under f, denoted by $f(A)$, is the IFS in Y defined by:

$$f(A) = (f(\mu_A), f(\nu_A)),$$

where for each $y \in Y$

$$f(\mu_A)(y) = \left\{ \begin{array}{ll}
\bigvee_{x \in f^{-1}(y)} \mu_{A(x)} & \text{if } f^{-1}(y) \neq \emptyset, \\
0 & \text{if } f^{-1}(y) = \emptyset
\end{array} \right.$$

and

$$f(\nu_A)(y) = \left\{ \begin{array}{ll}
\bigwedge_{x \in f^{-1}(y)} \nu_{A(x)} & \text{if } f^{-1}(y) \neq \emptyset, \\
1 & \text{if } f^{-1}(y) = \emptyset
\end{array} \right.$$

Now, we list some concepts and results in
lattice theory.
Throughout this paper \(L = (L, +, \cdot) \) denotes a lattice.

Definition 1.6[2]. An element \(x \in L \) is said to be relatively complemented if \(x \) is complemented in every \([a, b]\) with \(a \leq x \leq b \), i.e., \(x + y = b \) for some \(y \in [a, b] \) such that \(xy = a \). The lattice \(L \) is said to be relatively complemented if each \(x \in L \) is relatively complemented.

Definition 1.7[2]. A relatively complemented distributive lattice with 0 is a generalized Boolean algebra.

Definition 1.8[2]. Let \(L \) be a generalized Boolean algebra and let \(x, y \in L \). We define the difference, \(x - y \) and the symmetric difference, \(x \oplus y \), of \(x \) and \(y \), respectively as follows:
- \(x - y \) is the relative complement of \(xy \) in the interval \([0, x]\)
and
- \(x \oplus y = (x - y) + (y - x) \).
It is easily seen that:
1. \(x - y \leq x \).
2. \(y + (x - y) = x + y \).
3. \(y(x - y) = 0 \).

Result 1.A. [19, Lemma 3.3]. Let \(L \) be a generalized Boolean algebra. Then \(x + y = x \oplus y \oplus xy \) for any \(x, y \in L \).

Definition 1.9[14]. A ring with 1 in which every element is idempotent is called a Boolean ring.

Result 1.B[14, Lemma 1.9]. Let \(R \) be a Boolean ring. Then
1. \(R \) is commutative.
2. \(a + a = 0 \) for each \(a \in R \).

(1) If \((L, +, \cdot, 0)\) is a generalized Boolean algebra, then \((L, \oplus, \cdot, 0)\) is a Boolean ring.
(2) If \((R, \oplus, \cdot, 0)\) is a Boolean ring, then \((R, +, \cdot, 0)\) is a generalized Boolean algebra, where \(x + y = x \oplus y \oplus xy \). Moreover, \(x \oplus y = (x - y) + (y - x) \).

The following is the immediate result of Definition 1.9, Results 1.A, 1.B and 1.C:

Lemma 1.10. Let \(L \) be a generalized Boolean algebra. Then
\[x + (x \oplus y) = y + (x \oplus y) \] for any \(x, y \in L \).

Remark 1.10. We can see that Lemma 1.9 is proved in Lemma 3.4 in [7, 19].

2. Intuitionistic fuzzy sublattices, ideals and filters

Definition 2.1. Let \(A \in IFS(L) \). (1) \(A \) is called an intuitionistic fuzzy sublattice (in short, \(IFL \)) of \(L \) if it satisfies the following conditions: for any \(x, y \in L \),
\[\mu_A(x + y) \wedge \mu_A(xy) \geq \mu_A(x) \wedge \mu_A(y) \]
and
\[\nu_A(x + y) \vee \nu_A(xy) \leq \nu_A(x) \vee \nu_A(y) \].
(2) \(A \) is called an intuitionistic fuzzy filter (in short, \(IFF \)) of \(L \), if
(i) \(A \) is an \(IGF \) of \(L \),
(ii) \(A \) is monotonic, i.e., \(\mu_A(x) \leq \mu_A(y) \)
and \(\nu_A(x) \geq \nu_A(y) \) whenever \(x \leq y \).
(3) \(A \) is called an intuitionistic fuzzy ideal (in short, \(IFI \)) of \(L \), if
(i) \(A \) is an \(IFL \) of \(L \),
(ii) \(A \) is antitone, i.e., \(\mu_A(x) \geq \mu_A(y) \)
and \(\nu_A(x) \leq \nu_A(y) \) whenever \(x \leq y \).

We will denote the set of all \(IFLs \), \(IFFs \) and \(IIFs \) of \(L \) as \(IFL(L) \), \(IFF(L) \) as \(IFL(L) \), respectively.

Proposition 2.2. Let \(A \in IFL(L) \). Then
1. \(A \in IFF(L) \) if and only if
\[A(xy) = (\mu_A(x) \wedge \mu_A(y)) \vee (\nu_A(x) \vee \nu_A(y)) \] for any \(x, y \in L \), i.e., \(\mu_A(x, \cdot) \cdot (I, \wedge) \) and
\(\nu_A^c : (L, \cdot) \to (I, \vee) \) are homomorphisms.

(2) \(A \in IFL(L) \) if and only if
\[
A(x + y) = (\mu_A(x) \wedge \mu_A(y), \nu_A(x) \vee \nu_A(y))
\]
for any \(x, y \in L \), i.e., \(\mu_A^c(L, +) \to (I, \wedge) \) and
\[
\nu_A^c(L, +) \to (I, \vee)
\]
are homomorphisms.

Definition 2.3. An intuitionistic fuzzy filter [resp. ideal] \(A \) of \(L \) is said to be prime if for any \(x, y \in L \),
\[
\mu_A(x + y) \leq \mu_A(x) \vee \mu_A(y)
\]
and
\[
\nu_A(x + y) \geq \nu_A(x) \wedge \nu_A(y)
\]
[resp. \(\mu_A(xy) \leq \mu_A(x) \vee \mu_A(y) \)
and \(\nu_A(xy) \geq \nu_A(x) \wedge \nu_A(y) \)].

Proposition 2.4. Let \(A \in IFL(L) \).

(1) \(A \) is an intuitionistic fuzzy prime filter of \(L \) if and only if
\[
A(xy) = (\mu_A(x) \wedge \mu_A(y), \nu_A(x) \vee \nu_A(y))
\]
and
\[
A(x + y) = (\mu_A(x) \wedge \mu_A(y), \nu_A(x) \vee \nu_A(y))
\]
for any \(x, y \in L \), i.e.,
\[
\mu_A^c(L, +, \cdot) \to (I, \vee, \wedge)
\]
and
\[
\nu_A^c(L, +, \cdot) \to (I, \wedge, \vee)
\]
are homomorphisms.

(2) \(A \) is an intuitionistic fuzzy prime filter of \(L \) if and only if
\[
A(xy) = \mu_A(x) \wedge \mu_A(y), \nu_A(x) \vee \nu_A(y)
\]
for any \(x, y \in L \), i.e., \(\mu_A^c(L, +, \cdot) \to (I, \vee, \wedge) \)
and
\[
\nu_A^c(L, +, \cdot) \to (I, \wedge, \vee)
\]
are homomorphisms.

The following is the immediate result of Proposition 2.4:

Corollary 2.4. Let \(A \in IFL(L) \). Then \(A \) is an intuitionistic fuzzy prime filter (resp. ideal) of \(L \) if and only if \(A^c \) is an intuitionistic fuzzy prime ideal (resp. filter) of \(L \).

Proposition 2.5. Let \(f : L \to L' \) be a lattice homomorphism.

(1) If \(f \) is surjective and \(A \in IFL(L) \) [resp. \(IFL(L) \) and \(IFF(L) \)], then \(f(A) \in IFL(L') \) [resp. \(IFL(L') \) and \(IFF(L') \)].

(2) If \(B \) is an intuitionistic fuzzy sublattice [resp. ideal, prime ideal, filter, and prime filter] of \(L' \), then \(f^{-1}(B) \) is an intuitionistic fuzzy sublattice [resp. ideal, prime ideal, filter, and prime filter] of \(L \).

3. Intuitionistic fuzzy congruences

Definition 3.1. Let \(R \in IFR(L) \). Then \(R \) is called an intuitionistic fuzzy equivalence relation (in short, IFE) on \(L \) if it satisfies the following conditions hold:

(i) \(R \) is reflexive, i.e.,
\[
R(x, x) = (\bigvee_{y \in L} \mu_R(x, y), \bigwedge_{y \in L} \nu_R(x, y)),
\]
for each \(x \in L \).

(ii) \(R \) is symmetric, i.e., \(R(x, y) = R(y, x) \), for any \(x, y \in L \).

(iii) \(R \) is transitive, i.e., \(R \circ R \subseteq R \).

Definition 3.2. Let \(R \) be an IFE on \(L \). Then \(R \) is called an intuitionistic fuzzy congruence (in short, IFC) on \(L \) if it satisfies the following conditions hold: for any \(x_1, x_2, y_1, y_2 \in L \),

(i) \[
\mu_R(x_1 + x_2, y_1 + y_2) \geq \mu_R(x_1, y_1) \wedge \mu_R(x_2, y_2)
\]
and
\[
\nu_R(x_1 + x_2, y_1 + y_2) \leq \nu_R(x_1, y_1) \vee \nu_R(x_2, y_2),
\]

(ii) \[
\mu_R(x_1 x_2, y_1 y_2) \geq \mu_R(x_1, y_1) \wedge \mu_R(x_2, y_2)
\]
and
\[
\nu_R(x_1 x_2, y_1 y_2) \leq \nu_R(x_1, y_1) \vee \nu_R(x_2, y_2).
\]

We will denote the set of all IFCs on \(L \) as IFC(\(L \)).

Definition 3.3. Let \(A \in IFL(L) \). We define a complex mapping \(R_A = (\mu_R, \nu_R) : L \times L \to I \) as follows: for any \(x, y \in L \),
\[
\mu_R(x, y) = \bigvee_{a \in A, \mu_A(a) \neq 0} \mu_A(a)
\]
and
\[\nu_{R_A}(x, y) = \bigwedge_{a + x = a + y} \nu_A(a). \]

Then \(R_A \) is called the intuitionistic fuzzy relation induced by \(A \).

Lemma 3.4. Let \(L \) be a distributive lattice. If \(A \in IFL(L) \), then \(R_A \in IFC(L) \).

Definition 3.5. Let \(R \in IFE(L) \). We define a complex mapping \(A_R = (\mu_{A_R}, \nu_{A_R}) : L \rightarrow I \times I \) as follows: for each \(x \in L \),

\[\mu_{A_R}(x) = \bigwedge_{y \in L} \mu_R(xy, x) \]

and

\[\nu_{A_R}(x) = \bigvee_{y \in L} \nu_R(xy, x). \]

Then \(A_R \) is called the intuitionistic fuzzy set in \(L \) induced by \(R \).

Lemma 3.6. Let \(L \) be a distributive lattice. If \(R \in IFC(L) \), then \(A_R \in IFL(L) \).

Theorem 3.7. Let \(L \) be a distributive lattice with 0. If \(A \in IFL(L) \), then \(A = A_{R_A} \).

Lemma 3.8. Let \(L \) be a generalized Boolean algebra and let \(A \in IFL(L) \). Then \(A(x \oplus y) = R_A(x, y) \) for any \(x, y \in L \).

Lemma 3.9. Let \(L \) be a lattice with 0. If \(R \in IFC(L) \), then \(A_{R(x)} = R(x, 0) \) for each \(x \in L \).

Lemma 3.10. Let \(A_1, A_2 \in IFL(L) \) and let \(R_1, R_2 \in IFC(L) \).

1. If \(A_2 \subseteq A_1 \), then \(R_2 \subseteq R_A \).
2. If \(R_2 \subseteq R_1 \), then \(A_{R_2} \subseteq A_{R_1} \).

Theorem 3.11. Let \(L \) be a generalized Boolean algebra. If \(R \in IFC(L) \), then \(R_{A_x} = R \).

Theorem 3.12. Let \(L \) be a generalized Boolean algebra. Then \((IFL(L), \cap, +) \equiv (IFC(L), \cap, +) \).

4. Products of intuitionistic fuzzy ideals

Definition 4.1. Let \(A \in IFS(L_1) \) and \(B \in IFS(L_2) \). We define a complex mapping \(A \times B = (\mu_{A \times B}, \nu_{A \times B}) : L_1 \times L_2 \rightarrow I \times I \) as follows: for each \((x, y) \in L_1 \times L_2 \),

\[\mu_{A \times B}(x, y) = \mu_A(x) \land \mu_B(y) \]

and

\[\nu_{A \times B}(x, y) = \nu_A(x) \lor \nu_B(y). \]

Then \(A \times B \) is called the product of \(A \) and \(B \). It is clear that \(A \times B \in IFS(L_1 \times L_2) \) from the above definition.

Definition 4.2. Let \(A \in IFS(L_1 \times L_2) \). We define two complex mappings

\[\pi_1(A) = (\mu_{\pi_1(A)}, \nu_{\pi_1(A)}) : L_1 \rightarrow I \times I \]

and

\[\pi_2(A) = (\mu_{\pi_2(A)}, \nu_{\pi_2(A)}) : L_2 \rightarrow I \times I. \]

as follows, respectively:

\[\pi_1(A)(x) = (\bigvee_{y \in L_2} \mu_A(x, y), \bigwedge_{y \in L_2} \nu_A(x, y)) \]

for each \(x \in L_1 \)

and

\[\pi_2(A)(y) = (\bigvee_{x \in L_1} \mu_A(x, y), \bigwedge_{x \in L_1} \nu_A(x, y)) \]

for each \(y \in L_2 \).

Then \(\pi_1(A)(x) \) and \(\pi_1(A)(x) \) are called the projections of \(A \) on \(L_1 \) and \(L_2 \), respectively.

It is clear that \(\pi_1(A) \in IFS(L_1) \) and \(\pi_2(A) \in IFS(L_2) \) from the above definition.

Proposition 4.3. (1) If \(A_i \in IFL(L_i) \) [resp. \(IFF(L_i) \)] \((i = 1, 2)\), then \(A_1 \times A_2 \in IFL(L_1 \times L_2) \) [resp. \(IFF(L_1 \times L_2) \)].

(2) If \(A \in IFL(L_1 \times L_2) \) [resp. \(IFF(L_1 \times L_2) \)] and \(IFF(L_1 \times L_2) \), then \(\pi_i(A) \in IFL(L_i) \) [resp. \(IFL(L_i) \) and \(IFF(L_i) \)] \((i = 1, 2)\).

Definition 4.4. Let \(A \in IFS(L_1 \times L_2) \) and let \(a \in L_2, b \in L_1 \). We define two complex
mappings

\[A_1^{(a)} = (\mu_{A_1}(a), \nu_{A_1}(a)) : L_1 \rightarrow I \times I \]

and

\[A_2^{(b)} = (\mu_{A_2}(b), \nu_{A_2}(b)) : L_2 \rightarrow I \times I. \]

as follows, respectively:

\[A_1^{(a)}(x) = (\mu_{A}(x,a), \nu_{A}(x,a)) \quad \text{for each} \quad x \in L_1 \]

and

\[A_2^{(b)}(y) = (\mu_{A}(b,y), \nu_{A}(b,y)) \quad \text{for each} \quad y \in L_2. \]

Then \(A_1^{(a)} \) and \(A_2^{(b)} \) called the marginal intuitionistic fuzzy sets of \(A \) (with respect to \(a \) and \(b \)). It is clear that \(A_1^{(a)} \in IFS(L_1) \) and \(A_2^{(b)} \in IFS(L_2) \) from the above definition.

Proposition 4.5. If \(A \in IFL(L_1 \times L_2) \)
[res. \(IFL(L_1 \times L_2) \) and \(IFF(L_1 \times L_2) \),] then
\(A_1^{(a)} \in IFL(L_1) \) [resp. \(IFL(L_1) \) and \(IFF(L_1) \)]
for each \(a \in L_2 \) and \(A_2^{(b)} \in IFL(L_2) \) [resp. \(IFF(L_2) \)] for each \(b \in L_1. \)

Lemma 4.6. If \(A \in IFL(L_1 \times L_2) \), then for each
\(a \in L_2 \) and each \(b \in L_1 \),

\[A_1^{(a)} \times A_2^{(b)} \subset C \in \pi_1(A) \times \pi_2(A). \]

Theorem 4.7. Let \(L_1 \) and \(L_2 \) be two lattices with 0 and let \(A \in IFL(L_1 \times L_2) \). Then \(A \) is the product of an \(IFL \) of \(\mathcal{S}_L \cdot 1 \mathcal{S} \) \(L_1 \) and of an \(IFL \) of \(L_2 \) if and only if

\[A_1^{(a)} \times A_2^{(b)} = \pi_1(A) \times \pi_2(A). \]

References