Fuzzy Beppo Levi's Theorem

Mi-Hye Kim
School of Electrical & Computer Engineering
Chungbuk National University
E-mail: mhkim@chungbuk.ac.kr

요 약

In this paper, we introduce Fuzzy Beppo Levi's Theorem in which we use the supremum instead of addition in the expression of Beppo Levi's Theorem. That holds under the conditions which are continuity of t-seminorm T and the fuzzy additivity of a fuzzy measure g.

1. Introduction

Sugeno [8] defined a fuzzy measure as a measure having the monotonicity instead of additivity and a fuzzy integral which is an integral with respect to fuzzy measure. A generalization of the fuzzy integral was introduced by Raiescu and Adams[4]. The concept of the seminormed fuzzy integral were proposed by Suarez and Gill[6,7]. In this paper, we introduce Fuzzy Beppo Levi's Theorem in which we use the supremum instead of addition in the expression of Beppo Levi's Theorem. That holds under the conditions which are continuity of t-seminorm T and the fuzzy additivity of a fuzzy measure g.

2. PRELIMINARIES

Let X be a nonempty set, \(\mathcal{A} \) be a \(\sigma \)-algebra of subsets of X.

A set function \(g: A \rightarrow [0,1] \) is called a fuzzy measure if

1. \(g(\emptyset) = 0 \);
2. \(A \subseteq B \Rightarrow g(A) \leq g(B) \);
3. \(A_n \subseteq A_1 \subseteq A_2 \subseteq \ldots \) and \(\bigcup_{n=1}^{\infty} A_n \in \mathcal{A} \)
 \[\Rightarrow \lim \inf_{n \to \infty} g(A_n) = g\left(\bigcup_{n=1}^{\infty} A_n \right) \];
4. \(A_n \subseteq A_1 \supset A_2 \supset \ldots \) and \(\bigcap_{n=1}^{\infty} A_n \in \mathcal{A} \)
 \[\Rightarrow \lim \sup_{n \to \infty} g(A_n) = g\left(\bigcap_{n=1}^{\infty} E_n \right) \].

We call \((X, \mathcal{A}, g) \) a fuzzy measure space if \(g \) is a fuzzy measure on a measurable space \((X, \mathcal{A}) \).
A real-valued function \(h: X \rightarrow [0,1] \) is \(\mathcal{A} \)-measurable with respect to \(\mathcal{A} \) and \(\mathcal{B} \) (measurable, for short, if there is no confusion likely) if

\[
h^{-1}(B) = \{ x \mid h(x) \in B \} \in \mathcal{A} \text{ for any } B \in \mathcal{B}
\]

where \(\mathcal{B} \) is the \(\sigma \)-algebra of Borel subsets of \([0,1]\).

From now on, let us consider the set

\(L_0^0(X) = \{ h: X \rightarrow [0,1] \mid h \text{ is measurable with respect to } \mathcal{A} \text{ and } \mathcal{B} \} \)

For any given \(h \in L_0^0(X) \), we write

\(H_a = \{ x \mid h(x) \geq a \} \), where \(a \in [0,1] \).

Let \(A \in \mathcal{A}, h \in L_0^0(X) \). The fuzzy integral of \(h \) on \(A \) with respect to \(g \), which denote by \(\int_A h \, dg \), is defined by

\[
\int_A h \, dg = \sup_{a \in [0,1]} \{ a \land g(A \cap H_a) \}.
\]

When \(A = X \), the fuzzy integral may be denote by \(\int_X h \, dg \).

A \(t \)-seminorm as a function which satisfies:

1. For each \(a \in [0,1] \), \(\tau(x,1) = \tau(1,1) = \tau \)
2. For each \(x_1, x_2, x_3, x_4 \in [0,1] \), if \(x_1 \leq x_3, x_2 \leq x_4 \), then \(\tau(x_1, x_2) \leq \tau(x_3, x_4) \).

Example 2.1 The following functions are \(t \)-seminorms

1. \(\tau(x,y) = x \lor y \)
2. \(\tau(x,y) = xy \)
3. \(\tau(x,y) = 0 \lor (x + y - 1) \)

A \(t \)-seminorm is a function \(\perp: [0,1] \times [0,1] \rightarrow [0,1] \) satisfying:

1. For each \(x \in [0,1] \), \(\perp(x,0) = \perp(0,x) = x \)
2. For each \(x_1, x_2, x_3, x_4 \in [0,1] \), if \(x_1 \leq x_3, x_2 \leq x_4 \), then \(\perp(x_1, x_2) \leq \perp(x_3, x_4) \).

It is easy to see that \(\perp \) is a \(t \)-seminorm if and only if there exist a \(t \)-seminorm \(\tau \) such that

\[
\perp(x, y) = 1 - \tau(1-x, 1-y).
\]

Example 2.2 The following functions are \(t \)-seminonorms

1. \(\perp(x, y) = x \lor y \)
2. \(\perp(x, y) = (x+y) - xy \)
3. \(\perp(x, y) = (x+y) \land 1 \)

Let \(\tau \) be a \(t \)-seminorm. For all \(h \in L_0^0(X) \), the seminormed fuzzy integral of \(h \) over \(A \in \mathcal{A} \) to fuzzy measure \(g \) is defined as:

\[
\int_A h \, \tau g = \sup_{a \in [0,1]} \tau(\{ a \}, g(A \cap H_a)) \quad (2.1)
\]

and the semiconormed fuzzy integral of \(h \) over \(A \in A \) to fuzzy measure \(g \) is defined as:

\[
\int_A h \, \perp g = \inf_{a \in [0,1]} \perp(\{ a \}, g(A \cap H_a)) \quad (2.2)
\]

In what follows, \(\int_X h \, \tau g \) will be denoted by \(\int_X h \, \tau g \) for short.

The seminormed fuzzy integral contains as a particular case the Sugeno's fuzzy integral with \(\tau(x,y) = x \land y \).

Let \(\mathcal{A} \) be a collection of subsets of \(X \). A set function \(g \) is called fuzzy additive on \(A \) if

\[
g(\bigcup_{i \in I} A_i) = \sup_{i \in I} g(A_i)
\]

for any subclass \(\{ A_i \mid i \in I \} \) of \(\mathcal{A} \) whose union is in \(\mathcal{A} \), where \(I \) is an arbitrary countable index set.

If \(A_1 \in \mathcal{A}, A_2 \in \mathcal{A} \) then the fuzzy additivity of \(g \) is equivalent to the simpler requirement that

\[
g(A_1 \cup A_2) = g(A_1) \lor g(A_2).
\]

The fuzzy additive \(g \) is called a possibility measure iff it is defined on the power set.
P(X) and \(g(X) = 1 \).

A basic probability assignment is called consonant iff it is defined on a nest (that is, a class fully ordered by the inclusion relation of sets).

If \(g \) is a possibility measure on the power set \(P(X) \), then its dual set function \(\nu \), which is defined by
\[
\nu(E) = 1 - g(\overline{E}) \text{ for any } E \in P(X)
\]
is called a consonant belief function (or necessity measure) on \(P(X) \), where \(\overline{E} = X - E \).

We recall some results given by Suarez and Alvarez [6]

Proposition 2.1 [6] If \(g \) be a possibility measure, then
\[
\begin{align*}
(1) & \quad \int_X (h_1 \lor h_2) T g = \int_X h_1 T g \lor \int_X h_2 T g \\
(2) & \quad \int_X (h_1 \lor h_2) \bot g = \int_X h_1 \bot g \lor \int_X h_2 \bot g
\end{align*}
\]

Proposition 2.2 [6] If \(g \) be a necessity measure, then
\[
\begin{align*}
(1) & \quad \int_X (h_1 \land h_2) T g = \int_X h_1 T g \land \int_X h_2 T g \\
(2) & \quad \int_X (h_1 \land h_2) \bot g = \int_X h_1 \bot g \land \int_X h_2 \bot g
\end{align*}
\]

If \(T \) and \(\bot \) are continuous, we have some interesting results, like the following. Now we will introduce Fuzzy Beppo Levi's Theorem in which we use the supremum instead of addition in the expression of Beppo Levi's Theorem.

Theorem 2.3 (Fuzzy Beppo Levi's Theorem)

Let \((X, A, g)\) be a fuzzy measure space.

(1) If \(g \) be fuzzy additive, and \(T \) be a continuous \(t \)-seminorm, then
\[
\int_X \left(\bigvee_{n=1}^{\infty} h_n \right) T g = \bigvee_{n=1}^{\infty} \left(\int_X h_n T g \right)
\]
for \(h_n \in L^0(X), n = 1, 2, 3, \ldots \).

(2) If \(g \) be fuzzy (scalar) multiplicative, and \(\bot \) be a continuous \(t \)-seminorm, then
\[
\int_X \left(\bigwedge_{n=1}^{\infty} h_n \right) T g = \bigwedge_{n=1}^{\infty} \left(\int_X h_n T g \right)
\]
for \(h_n \in L^0(X), n = 1, 2, 3, \ldots \).

Proof. We may assume that \(A = X \) without loss of generality.

(1) Let \(h_n \) be a sequence in \(L^0(X) \),
\[
h = \bigvee_{n=1}^{\infty} h_n \quad \text{and} \quad H_a = \{ x | h(x) \geq a \}.
\]
Then \(H_a = \bigcup_{n=1}^{\infty} H^a_n \), where \(H^a_n = \{ x | h_n(x) \geq a \} \).

Since \(T \) be a continuous \(t \)-seminorm for \(I_1 \) and \(I_2 \) are subsets of \([0,1]\),
\[
\bigvee_{x \in I_1, y \in I_2} T(x, y) = T(\bigvee_{x \in I_1} x, \bigvee_{y \in I_2} y),
\]
and the fuzzy additivity of \(g \), we have
\[
\int_X \left(\bigvee_{n=1}^{\infty} h_n \right) T g = \sup_{a \in [0,1]} T[a, g(H_a)]
\]
\[
= \sup_{a \in [0,1]} T[a, g(\bigvee_{n=1}^{\infty} H^a_n)]
\]
\[
= \sup_{a \in [0,1]} T[a, \bigvee_{n=1}^{\infty} g(H^a_n)]
\]
\[
= \sup_{a \in [0,1]} \left[\bigvee_{n=1}^{\infty} T[a, g(H^a_n)] \right]
\]
\[
\leq \bigvee_{n=1}^{\infty} \sup_{a \in [0,1]} T[a, g(H^a_n)]
\]
\[
= \bigvee_{n=1}^{\infty} \int_X h_n T g.
\]

The remaining inequality can be obtained directly from the monotonicity of the seminormed fuzzy integral. In fact since
\[
\int h_1 \triangleright g \leq \int h_2 \triangleright g \quad \text{for} \quad h_1 \leq h_2,
\]
\[
\int \left(\bigvee_{n=1}^{\infty} h_n \right) T g \geq \bigvee_{n=1}^{\infty} \int h_n T g.
\]

By (2.3) and (2.4), we have
\[\int (\bigwedge_{n=1}^{\infty} h_n) \top g = \bigvee_{n=1}^{\infty} \int h_n \top g. \]

(2) Let \(h_n \) be a sequence in \(L^0(X) \).

\[h = \bigwedge_{n=1}^{\infty} h_n \quad \text{and} \quad \mathcal{H}_a = \{ x \mid h(x) \geq a \}. \]

Then \(\mathcal{H}_a = \bigcap_{n=1}^{\infty} H^n_a \), where \(H^n_a = \{ x \mid h_n(x) \geq a \} \).

Since \(\top \) be a continuous \(t \)-semiconorm for \(I_1 \) and \(I_2 \) are subsets of \([0, 1] \),

\[x \in \bigcup_{i=1}^{I_1} y \in I_2 \top(x, y) = \top(\bigwedge_{i=1}^{I_1} x, \bigwedge_{i=2}^{I_1} y), \]

and since \(g \) is necessity measure, we have

\[\int (\bigwedge_{n=1}^{\infty} h_n) \top g = \inf_{a \in [0, 1]} \top[a, g(H^n_a)] \]

\[= \inf_{a \in [0, 1]} \top[a, g(\bigcap_{n=1}^{\infty} H^n_a)] \]

\[= \inf_{a \in [0, 1]} \top[a, \bigwedge_{n=1}^{\infty} g(H^n_a)] \]

\[\geq \bigvee_{n=1}^{\infty} \inf_{a \in [0, 1]} \top[a, g(H^n_a)] \]

\[= \bigwedge_{n=1}^{\infty} \int h_n \top g. \quad (2.5) \]

The remaining inequality can be obtained directly from the monotonicity of the semiconormed fuzzy integral. In fact since

\[\int h_1 \top g \leq \int h_2 \top g \quad \text{for} \quad h_1 \leq h_2, \]

\[\int (\bigwedge_{n=1}^{\infty} h_n) \top g \leq \bigwedge_{n=1}^{\infty} \int h_n \top g. \quad (2.6) \]

By (2.5) and (2.6), we have

\[\int (\bigwedge_{n=1}^{\infty} h_n) \top g = \bigwedge_{n=1}^{\infty} \int h_n \top g. \]

\(\top \) and \(\bot \) must be continuous; otherwise the above Theorem 2.3 does not hold.

Example 2.4 Let \((X, \mathcal{A}, g) \) be the Lebesgue measure space.

We take

\[h(x) = \begin{cases} x, & \text{if} \ 0 \leq x \leq \frac{1}{2} \frac{1}{n+1} \\ 0, & \text{otherwise} \end{cases} \]

and

\[\mathcal{T}(x, y) = \begin{cases} x, & \text{if} \ y = 1 \\ \frac{1}{2}, & \text{if} \ x = 1 \\ 0, & \text{if} \ 0 < x < \frac{1}{2} \text{ and } 0 < y < \frac{1}{2} \\ \text{otherwise}. \end{cases} \]

Then

\[\int h_n \top g \]

\[= \sup_{a \in [0, 1]} \top[a, g(H^n_a)] \]

\[= \sup_{a \in [0, 1]} \top[a, \bigwedge_{n=1}^{\infty} H^n_a] \]

\[= \sup_{a \in [0, 1]} \top[a, \bigwedge_{n=1}^{\infty} g(H^n_a)] \]

\[= \sup_{a \in [0, 1]} \top[a, \bigwedge_{n=1}^{\infty} g(\bigcap_{n=1}^{\infty} H^n_a)] \]

\[= \frac{1}{2}. \]

But

\[\int (\bigwedge_{n=1}^{\infty} h_n) \top g \]

\[= \sup_{a \in [0, 1]} \top[a, g(\bigcap_{n=1}^{\infty} H^n_a)] \]

\[= \sup_{a \in [0, 1]} \top[a, \bigwedge_{n=1}^{\infty} g(H^n_a)] \]

\[= \sup_{a \in [0, 1]} \top[a, \bigwedge_{n=1}^{\infty} g(\bigcap_{n=1}^{\infty} H^n_a)] \]

\[= 1. \]

Hence we have

\[\bigvee_{n=1}^{\infty} \int h_n \top g = \frac{1}{2} \neq 1 = \int (\bigwedge_{n=1}^{\infty} h_n) \top g. \]

This happens because, of course, \(\top \) is not continuous even if measure \(g \) is fuzzy additive.

3. **REFERENCES**

