Case 1

OPERATION OF UNRELIABLE SYSTEM [CASE: DRAGLINE]

CASE STUDIES IN RELIABILITY

Professor D.N.P. Murthy
The University of Queensland
Brisbane Australia

Case 1

OPERATION OF UNRELIABLE SYSTEM [CASE: DRAGLINE]

PRODUCT RELIABILITY

- Inherent reliability depends on decisions made during design and manufacture
- Reliability degrades with age and production rate (or usage level/intensity)
- System design based on some nominal production rate
- Actual production rate can differ depends on commercial considerations

PRODUCT RELIABILITY

Examples of increased production rate:

- · Machines running at higher speeds
- Trains carrying more load or running faster
- Flow rate in pipes (water, gas, oil etc) being higher

PRODUCT RELIABILITY

- Production rate determines the load (electrical, mechanical, thermal etc) on the various components and affects degradation
- Higher production rate implies more output when the system is in operational state
- However, it also leads to higher failures and as a result higher corrective and preventive maintenance costs

BUSINESS PERSPECTIVE

- Businesses need to take into account the effect of higher load in making decisions with regards the operation of complex unreliable systems
- Need to take into account the link between technical and commercial considerations from an overall business perspective

PROBLEM SOLUTION
Requires a good understanding of Reliability science Reliability modelling Reliability engineering Reliability management Decisions need to be made from an overall business perspective

CASE: DRAGLINE

(technical, commercial, operational)

☐ Need to understand the underlying degradation processes involved

 $\ \square$ Adequate data to build and validate

(Reliability science)

models

DRAGLINE

- Cost: 100 million dollars
- Moving surface dirt to expose coal in open cut mining
- Runs 24 hours per day and 365 days per year
- Revenue loss of 1 million dollar for every day out of action

CASE: DRAGLINE

- Commercial considerations dictate an increase in output
- Idea: Increase bucket size (100 tons to 140?)
- Greater load on components
- Implications for reliability and maintenance

MODELLING

- Modelling system in terms of its major components [Decomposition]
- Modelling degradation of each component
- Modelling effect of bucket load on component and system performance
- Involves reliability science, engineering and mathematics

SYSTEM DECOMPOSITION

- Hierarchy: Systems, sub-systems, assemblies, sub-assemblies and so on down to part and material level
- Complexity versus tractability
- Data available determines the appropriate level to model -- Need adequate data for model building

SYSTEM DECOMPOSITION

- The dragline was decomposed into 7 major systems
- Some of them were further subdivided resulting in 25 components
- Decision influenced by the data available for modelling

MODELLING

- Component Failures
- · System Failures
- Effect of Load on Failures
- Maintenance Actions
 - Major: Done every 5 years (Duration: 6 weeks)
 - Minor: Done once every 3 weeks (Duration: 8 hours)
- · Availability: Fraction of the time working
- Yield: Dirt moved per unit time

COMPONENT FAILURES

- Black box approach
- Weibull Distribution
 - Two parameter Weibull distribution
 - Scale (β) and shape (α) parameters
- Effect of bucket load (Accelerated Life)
 - No effect on shape parameter
 - Scale parameter is affected

EFFECT OF LOAD

- Define $v = V/V_0$
- V_0 Base dragline load (bucket + rigging + dirt)
- V Dragline load

$$F_{vi}(t,\alpha_i,\beta_{vi}) = F(t,\alpha_i,\frac{\beta_i}{\psi_i(v)})$$

where $\psi_i(v)$ is the scaling factor

FAILURE DATA

- Taken from FMMS maintenance database
- From end of Major Shutdown in March/April 1996 to July 1998
- Machine was assumed to be as "Good as New" at end of Major Shutdown
- Estimation of parameters using maximum likelihood method and least squares method

SYSTEM PERFORMANCE

- Availability: Depends on up and down times
- Down times: To rectify minor failures and preventive maintenance to avoid major failures
- Up time: Productive time
- Cycle: Time between major maintenance

SYSTEM PERFORMANCE

- Bucket load (X) affects both these variables
- Need to take into account preventive maintenance schedules for different components [Different time scales]
- Multiple objectives: Study different alternatives

OBJECTIVES

- Probability of major failure for a component during operation < some prespecified value [0.05%]
- Maximise total output per year
- Maximise revenue per year
- Minimise total cost per year
- Yield: Dirt moved per unit time

MODELLING THE SYSTEM

- System consists of 25 components (K= 25)
- The reliability of the system is modelled as a series system
- System only in working state if all components are working

$$S(T) = 1 - F(T) = \prod_{i=1}^{K} (1 - F_i(T))$$

AVAILABILITY

- Cycle Time: Depends on load ν the ratio of load to the base load
- Up time: T,
- Expected downtime (for minor and major preventive maintenance)
- From this we can obtain availability

AVAILABILITY

$$A(T,v) = \frac{T_v}{ECL(v)}$$

$$ECL(v) = T_v + \left[\sum_{i=1}^{K} \left\{ \int_{0}^{T_v} r_{vi}(x) dx \right\} \tau_{ri} \right] + \tau_{pm} + \tau_p$$

YIELD - BUCKET LOAD

SENSITIVITY STUDY (α)

CONCLUSIONS

- Study reveals that the bucket load can be increased to maximise the output yield
- Maximum yield corresponds to v ≈ 1.3 (dragline load = 182 tonnes or payload of 116 tonnes) as opposed to current payload of 74 tonnes
- Major PM interval will need to be reduced from 43680 usage hours to 25000 usage hours

REFERENCE

For more details, see Townson, P.
 Murthy, D.N.P. and Gurgenci, H. (2002),
 Optimisation of Dragline Load, in Case
 Studies in Reliability and Maintenance,
 WR Blischke and DNP Murthy [Editors],
 Wiley, New York.