CASE 3

WARRANTY COST ANALYSIS [(i) AIRCRAFT WINSHIELD and (ii) MICROWAVE ANTENNAS]

CASE STUDIES IN RELIABILITY

Professor D.N.P. Murthy
The University of Queensland
Brisbane Australia

CASE 3

WARRANTY COST ANALYSIS
[(i) AIRCRAFT WINSHIELD and
(ii) MICROWAVE ANTENNAS]

WARRANTY CONCEPT

- · Contractual agreement
- Established on sale of product
- Establishes
 - Buyer responsibility
 - Limitations
 - Seller liability

ROLE AND USES

- 1. Protection for buyer
 - Remedy on failure of item
 - Assurance of performance

This is important as customers cannot assess a new product.

Many countries have warranty legislation to ensure this.

ROLE AND USES

- 2. Protection for Seller
 - Specifies Buyer responsibilities
 - Limits liability
 - Limits cost
- 3. Marketing tool
 - Signal quality
 - Differentiate from others

PRODUCT WARRANTY

- Nearly every kind of product is sold with warranty (Consumer Non-durables, Consumer Durables, Software, Commercial and Industrial Products, and Defense Acquisition)
- Many different kinds of warranty policies are offered

FREE REPLACEMENT POLICY

The manufacturer agrees to repair or provide replacements for failed items free of charge up to a time W from the time of the initial purchase. The warranty expires at time W after purchase. (Denoted as FRW Policy.)

PRO-RATA POLICY

The manufacturer agrees to refund a fraction of the purchase price should the item fail before time W from the time of the initial purchase. The buyer is not constrained to buy a replacement item.

(Denoted as PRW Policy.)

FURTHER READING

Blischke, W. R., and D. N. P. Murthy (1994). Warranty Cost Analysis, New York: Marcel Dekker, Inc.

, Eds. (1996). *Product Warranty Handbook*, New York: Marcel
Dekker, Inc.

Murthy, D.N.P. And Blischke, W.R. (2004).

Warranty Management and Manufacturing,
Under preparation

WARRANTY COST ANALYSIS

- Offering warranty results in additional costs to the manufacturer due to servicing claims over the warranty period
- The cost depends on
 - Product reliability
 - Warranty duration and terms
 - Actions taken (repair, replace, refund etc)

MODELLING

- Simple versus Detail models: See the next two slides
- The simple model is adequate for the cost analysis of FRW and PRW policy for an existing product
- The detail model is needed for new product yet to be developed

SOME NOTATION

C,: seller's average cost per item

C_r: average repair cost

C_b: buyer's cost of item (selling price)

F(t): Failure distribution for the item

M(t): Renewal function associated with F(t)

(Obtained from tables - See Warranty Cost

Analysis by Blischke and Murthy)

FRW POLICY

NONREPAIRABLE ITEMS

Average cost per unit sold = $c_s M(W)$

REPAIRABLE ITEMS

Repaired items are "good-as-new" (true for Case-1)

Average cost per unit sold = $c_rM(W)$

PRW POLICY

Average cost per unit sold = $c_b[F(W) - \mu_w/W]$

 $(\mu_T = \text{Average time to failure of all items})$

that fail with lifetimes less than T) Formulas for μ_W are given in Warranty

Cost Analysis book

CASE: AIRCRAFT WINDSHIELD

From Chapter 13 of Warranty Cost Analysis

PROBLEM

- Item supplied without warranty
- Customers requests two-year warranty
- Select warranty terms (duration time or flying hours)
- Asess warranty costs

WINDSHIELD FAILURES

Windshield has several layers of material, including a very strong outer skin with a heated layer just beneath it, all laminated under high temperature and pressure.

Failures result from damage or delamination of the non-structural outer ply, or failure of the heating system.

These failures do not result in damage to the aircraft, but do result in replacement of the windshield.

DATA FOR MODELLING

- · Failure data: Time to failure
- Censored data: Items have survived for this length
- This makes the estimation problem a bit more difficult

	Falture	Times		1	Service Times	
0.040	1.866	2.385	3.443	0.046	1.436	2.59
0.301	1.876	2.481	3.467	0.140	1.492	2.60
0.309	1.899	2.610	3.478	0.150	1.580	2.67
0.557	1.911	2.625	3.578	0.248	1.719	2.71
0.943	1.912	2.632	3.595	0.280	1.794	2.81
1.070	1.914	2.646	3.699	0.313	1.915	2.82
1.124	1.981	2.661	3.779	0.389	1.920	2.87
1.248	2.010	2.688	3.924	0.487	1.963	2.95
1.281	2.038	2.823	4.035	0.622	1.978	3.00
1.281	2.085	2.890	4.121	0.900	2.053	3.10
1.303	2.089	2.902	4.167	0.952	2.065	3.30
1.432	2.097	2.934	4.240	0.996	2.117	3.48
1.480	2.135	2.962	4.255	1.003	2.137	3.50
1.505	2.154	2.964	4.278	1.010	2.141	3.62
1.506	2.190	3.000	4.305	1.085	2.163	3.66
1.568	2.194	3.103	4.376	1.092	2.183	3.69
1.615	2.223	3.114	4.449	1.152	2.240	4.01
1.619	2.224	3.117	4.485	1.183	2.341	4.62
1.652	2.229	3.166	4.570	1.244	2.435	4.80
1.632	2.300	3.344	4.602	1.249	2.464	4.88
1.757	2.324	3.376	4.663	1.262	2.543	5.14
1.795	2.349	3.385	4.694	1.360	2.560	

MODELLING

- Data: 88 failure times & 65 service times
- Repairable item: Repaired back to new
- WPP Plot used to select the model
- Mixture Weibull distribution fits the data best (See next slide)
- Ignoring the few early failure (by treating them as outliers) the two-parameter
 Weibull is a good fit (Shape parameter > 1)

POLICIES CONSIDERED

- 1. FRW, W = 5000 fl. hrs.
- 2. FRW, W = 2 years, calendar time
- 3. PRW, W = 5000 fl. hrs.
- 4. PRW, W = 2 years

(Average usage rate: 3061 flight hours per year)

WARRANTY COSTS

Costs: $C_s = $9000 C_b = $17500 C_r = 5400

Policy	Estimated Cost
1	\$15,669
2	18,978
3	13,300
4	16,098

CASE: MICROWAVE ANTENNAS

MICROWAVE ANTENNAS

- Used for sending and receiving microwave signals
- Major Components
 - Crystal Receiver
 - Crystal Transmitter
 - 2Mb card
 - 2Mb PCM card

SOME CHALLENGES

- Sold in lots (size varying from 1 100)
- Sold with 3 year FRW policy
- Failed items returned in batches
- · No information about
 - the time at which the item was put in use
 - the time at which the item failed

Manufacturing Cost Data

Customer	Number	Labour	Material	Overhead	Direct	Total	Average
Order	of Systems	Cost	Cost	Recovered	Expenses	Cost	Costper
Humber	in Betch	(3)	(\$)	(\$)	(\$)	(\$)	System (\$)
034-1605	2	1329	11474	929	0	13732	6866.00
034-1616	24	18155	131811	12355	1035	163356	6806.50
034-1758	2	2665	11940	1965	0	16470	8235.00
034-1809	38	30600	178243	21415	0	230258	6059 42
034-1899	2	1800	10250	1260	0	13310	6655.00
056-1976	4	2812	29448	1966	0	34226	8556.50
068-1838	4	3966	27528	2776	0	34270	8567.50
072-1955	2	1238	18782	867	0	20887	10443.50
099-1429	100	72900	529900	51100	7100	661000	6610.00
106-1682	16	14180	132379	9928	1386	157873	9867.06

Repair Cost Data

Repair	Number	Labour	Material	Overhead	Direct	Total	Average
Job	œf	Cost	Cost	Recovered	Expenses	Cost	Contper
Number	Pailed Parts	(\$)	(2)	(\$)	(\$)	(\$)	System (\$)
034-W348	4	230	435	161	0	826	206.50
034-W355	1	83	0	62	0	145	145.00
034-W364	2	108	2	75	0	185	92.50
034-W378	1	54	0	37	0	91	91.00
040-R215	1	63	0	44	0	107	107.00
040-W241	1	63	0	44	0	107	107.00
040-W252	3	111	2	78	0	191	63.67

Failure Records

Repair	Failure	Customer	Despetch	Age	Serial No
Jab#	Date	Job#	Date	(Deys)	
040-W285	9/16/94	040-1145	7/14/93	429	87
196-R344	5/3/95	196-1306	7/30/93	642	1376
040-W376	3/8/95	040-1168	9/20/93	534	1396
040-W376	3/8/95	040-1168	9/20/93	534	1397
040-W376	3/8/95	040-1168	9/20/93	534	1398
040-W376	3/8/95	040-1168	9/20/93	534	1300
040-W252	7/11/94	040-1359	10/29/93	255	1559
040-W252	7/11/94	040-1360	10/29/93	255	1498

Survival Records

Customer	Despatch	Number	Date of	Age (Days) at
Job	Date	of	Deta	Date of Data
Number		Systems	Collection	Collection
196-1306	7/30/93	2	6/9/95	679
196-1322	9/11/93	2	6/9/95	636
355-1336	9/24/93	2	6/9/95	623
040-1358	10/29/93	2	6/9/95	588
040-1359	10/29/93	2	6/9/95	588
040-1360	10/29/93	2	6/9/95	58B
040-1361	10/29/93	2	6/9/95	588
034-1393	11/12/93	10	6/9/95	574

Data used in MATLAB program for analysis

Batch	Betch	Age of	Number of	Failure
Number	Size	Batch	Failures in Batch	Times
j	N,	T,	ъ,	x,
t	2	679	1	642
2	2	636	0	
3	2	623	0	
4	2	588	0	
. 5	2	588	2	255
				350
6	2	588	3	255
				354

PARAMETER ESTIMATES

- Manufacturing Cost per Item, C_s = \$7316.18
- Repair Cost per Item, C_r = \$143.94
- Weibull scale parameter, $\lambda (= 1/\eta) = 0.43233$
- Weibull shape parameter, $\beta = 1.57479$

Warranty Servicing Cost for different Warranty Periods.

Westanty	Expected	Warranty	Warracity Servicing Cost
Period	Number of Failures	Servicing	as a percentage of
(Years)	in Warranty Period	Cost (S)	the manufacture cost
w	M(W)	4*M(W)	
ı	0.27	38.43	0.53
2	0.80	114.48	1.56
3	1.51	216.78	2.96
4	237	341.02	4.66
5	337	484.61	6.62
6	4.49	645.78	8.83

WARRANTY SERVICING COSTS FOR DIFFERING REPAIR COSTS

Wattanty	Repair	Repair Cost	Repair Cost	Repair Cost
Period	Cost	plus 1 Standard	plus 2 Standard	plus 3 Standard
İ		Deviation	Deviations	Deviations
(Yessa)	\$143.94	\$238.87	\$333.81	\$428.75
1	38.43	63.78	89.12	114.47
2	114.48	189.99	265.49	341.00
3	216.78	359.77	502.76	645.75
4	341.02	565.95	790.89	1015.82
5	484.61	804.25	1123.90	1,443.55
6	645.78	1071.73	1497.69	1923.64

WARRANTY SERVICING COSTS FOR VARYING SCALE PARAMETER λ

Westerty	99.9%	99%	95%	Point	95%	99%	99.9%
Period	Confidence	Confidence	Confidence	Estimate	Confidence	Confidence	Confidence
	Interval for λ	Interval for λ	Interval for λ	for	Interval for A	Interval for λ	Interval for λ
	Lower Limit	Lower Limit	Lower Limit	λ	Upper Limit	Upper Limit	Upper Limit
(Years)	0.42295	0.42499	0.42674	0.43233	0.43793	0.43968	0.44172
	37.12	37.41	37.65	38.43	39.21	39.46	39.75
2	110.59	111.43	112.15	114.48	116.82	117.56	118.42
3	209.42	211.01	21238	216.78	221.21	222.61	224.24
4	329.43	331.93	334.10	341.02	347.99	350.19	352.75
5	468.14	471.70	474.77	484.61	494.52	497.64	501.28
6	623.84	628.58	632.68	645.78	658.98	663.15	668.00

WARRANTY SERVICING COSTS FOR VARYING SCALE PARAMETER β

Warranty	99.9%	99%	95%	Point	95%	99%	99.9%
Period	Confidence	Confidence	Confidence	Estimate	Confidence	Confidence	Confidence
- 1	Interval for B	Interval for B	Interval for β	îtr	Interval for β	Interval for β	Interval for β
	Lower Limit	Lower Limit	Lower Limit	β	Upper Limit	Upper Limit	Upper Limit
(Years)	1.56540	1.56744	1.56920	1.57479	1.58038	1.58214	1.58418
-1	38.73	38.67	38.61	38.43	38.25	38.19	38.13
2	114.63	114.60	114.57	114.48	114.38	114.35	114.32
3	216.25	216.37	216.47	216.78	217.10	217.20	217.31
4	339.27	339.65	339.98	341.02	342.06	342.39	342.78
5	481.11	481.87	482.52	484.61	486.70	487.36	488.13
6	640.03	641.27	642.35	645.78	649.23	650.32	651.58