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ABSTRACT : In this paper, an autonomous navigation system for auronomous guided vehicles (AGVs) aperated in an autome'ed

containes termingl is designed. The navigntion system §s bused on the sensors detecting the range and bearing The navigation aigoricen

used is an interacting multiple model (IXM) algorithm to detect ather AGUs and avoid other obstacles using informations obtained

from multiple sensors. As models to detect other AGVs (or obstwfes), two kinematic mudels are derived. Constant velocity muodel

Jor linear motion and constant speed turn model for curvitinear motion. For constant speed turn model,  an unscented Kalman filier
(UKEF) ic used because of drawhacks of the extended Kalman filter (ERKF1 in nonlinear svstem. The suggested afgorithm reduces
the root mean squares error for linear motions, while it can rapidly detect possible turning motions.
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1. Introduction

AGVs could be used to
that
containers within the terminal (Joannou et al, 200D). A

In container terminals,

replace  the manually  driven  trucks transport
photograph of an AGY with load is shown in Fig. 1.
While the

highways

automation  of  vehicles and  trucks  on

does  not have  strong support of
manufacturers due to Hability issues and the complexity
of the environment in which they have w operawe, the
use of automated trucks at low speeds m a restricted
environment such as a terminal is a completely different
story. The low speed characteristics of AGVs together
with the restricted area they have to operate in makes
the overall problem much simpler o solve. Therefore,
the use of AGVs as container handling devices in
from the point of view of

terminals 18 feasible

technology  and has a  strong  potential to  improve
efficiency and reduce labor cost,

The ability to predict the motion of other AGVs {or
obstacles) accurately in the terminal environment can
improve the controller’s ability to adupt smoothly w the
AGVs (or

Durrant Whyte,

obstacles) preceding it

2004

behavior of those

(Madhavan  and

20001

Zhang ¢t al,

= imnpdal® pan.ac ke 081510 1481
. Kehong® pusan ne ke 5154 2451

This ability (o predict motions is dependent on how
well the sensors of an AGV can detect other AGVs cor
other AGVs
obstacles using the object tnformation obtained f{rom

obstacles). In order to dewect or avnid
multiple sensors, tracking techniques based on Bavesian
approach is usually used (Bar Shalom ot al, 2001).
Tracking a maneuvering target is a  well established
topic in the target tracking literature.

Techniques fracking a maneuvering target are used
in many tracking and surveillance systems as well as
in applications where relizbility is a4 main  concern
(Bar Shalom et al., 20010 Li and Bar -Shalom, 1993). A
modc
mancuvening target have been proposed in the literatire
using  interactive multiple models  (IMM)  algorithm
{Bar Shalom et al., 20015 Lt and Bar-Shalom, 1993).

mumber  of  multiple technigues to track  a

Fig. 1 Photograph of AGV in an automated container
terminal.
Generally, target motion models can be divided into
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two subcategorics: a unifornm motion model and a
maneuvering model. For tracking a maneuvering target,
a validation method of a new wype of flight mode was

presented in (Nabaa and Bishop, 2000). Semerdjiev and

Mihavlova (2000)  have discussed  variable and
fixed structure augmented IMM  algorithms, while an
fixed structure was only  discussed in (L1 and

Bar-Shalom, 1993), and applied them to a mancuvening
ship tracking problem by augmenting the turn rate
error.

In this paper., because of these drawbacks of the
AIMM EKF, an unscented Kalman filter (UKF) (Julier
et al, 2000 Ristic and Arulampalam, 2003) replacing the
EKF is used for the curvilincar model. The algorithm
itself uses the same AIMM  logic, but the
model -matched EKF is replaced by the model-matched
UKF.

The objective of this paper is 1o design an UKF for
curvilinear motions in an IMM algorithm to detect and
avoid other AGVs for the autonomous navigation of an
AGYV in a automated port.

The main contributions of this paper are as follows:
First, the IMM
algorithm as a AGVs to
provided. Second,

in an automated container terminal,
navigation algorithm for
navigate autonomously s iwo
kinematic models for possible navigation patterns of
AGVs are derived: Constant velocity model for linear
motion and constant speed turn model for curvilinear
motion are discussed. Third, for constant speed turn
model, an UKF is used because of the drawbacks of
the EKF. Fourth, the suggested algorithm reduces the
root mean  Squares in the of rectilinear

error case

motions and detects the occurrence of maneuvering
quickly in the case of turning motions.

This paper is organized as follows: In Section 2, we
patterns  of AGV, a

formulated,

various navigation
hybrid

kinematic models are discussed. We then compare an

provide

stochastic system is and  two
UKF with an EKF for constant speed turn model in an
IMM algorithm in Section 3. Section 4 concludes the

paper.
2. ProblemFormulation
2.1 Driving Patterns

Fig. 2 depicts various driving patterns of an AGV.

straight line and curve, cut-in/out, and u tum. All these

patterns can be represented by a  combination of a

constant  velocity  rectilinear motion, a  constant
acceleration  rectilinear  motion, a  constant  angular
velocity curvilinear motion, and a constant  angular

acceleration curvilinear motion. As kinematic models for
describing these motions, two stochastic models will be
investigated: one for rectilinear motion and another for
curvilinear motion.  Typical navigation patierns  are
described briefly as follows:

1} Straight line and curve: In this sitnation, the AGV
detects a preceding AGV that follows straight lines and
curves on a curved road (Lauffenburger et al, 2003;
Rajamani et al., 2003).

i) Cut-infout: The cut-infout means the situation
that a maneuvering AGV cuts in (or out) to (or from)
the lane while the AGV is tracking other AGV. In this
situation, detecting of up to three surrounding AGVs
are assumed: one in front of it, one in the left, and one
in the right. In this case, the target AGV changes its
motion from a rectilinear motion to a curvilinear motion
and then back to a rectilinear motion.

ui) U~turn: This situation occurs when the target
AGV changes its driving direction by 180", The u-turn
consists of three routes as follows: The target AGV
moves rectilinearly, undergoes a uniform circular tuming
180°

converts to a rectilinear motion in the opposite direction.

up to with a constant yaw rate, and then

2a

i
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Fig. 2 Various driving pattems of an AGV (Duinkerken
et al, 2002).

2.2 Stochastic Hybrid System

FFollowing the work of (Li and Bar Shalom, 1993), a
hybrid
considered as follows:

x(k) = fTk~1Lx(k -1),m(k))+ glk - Lx(k—1), {k~Lm(k)L,m(k)] (1)

with noisy measurements

stochastic system  with  additive  noise s
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2(k) = hlk,x(k),m(k)]+wk,m(k)] (2

where x(k)eR™ is the state vector

velocity,

including the

position, and vaw rate of the wvehicle at

discrete time k. m(k) is the scalar-valued modal state

(driving mode index) at instant k. which is a
homogencous  Markov  chain with  probabilities  of
transition given by

P{m_i(k+1)|mi(k)}=7r,_-i, Vm;,m; M %))

where P{} denotes probability and M is the set of
modal  states, ie., constant  velocity,  constant
accelerution, constant  angular  rate  tuming  with a

constant radius of curvature, cte. The considered system
is hyvbrid since the discrete events mik) appears in the
svstem. In the adaptive cruise control, m(k) denotes a
driving mode of the preceding vehicle in effect during
the sampling period ending at k, ie. the time period
(tx-1-%]. The event that a mode ™
time k is denoted as

A
m,~(k)={m(k)=m,-}, (4)

z(k)e Rz s

from the sensor at time k, which is mode-dependent.

is in effect at

the vector-valued noisy measurements
Vik-1Lm(k)]e R™ is the mode-dependent process noise
sequence vk -1,m(k)]
Olk-1Lm(k)). wik,m(k)]e R"

measurement noise sequence with mean wWlk,m(k)] and

with mean and covanance

is the mode-dependent

covariance R[k,m(k)]. Finally f g, and h are nonlinear
vector-valued functions.

2.3 Two Kinematic Models

The concept of using noise driven kinematic models
comes from the fact that noises with different levels of
variance can represent different motions. A model with
high variance noise can caplure maneuvering motions,
while a model with low variance noise represents
uniform motions. The multiple models approach assumes
that a model can capture the complex system behavior
better than others at an instant.

Two kinematic models for rectilincar and curvilinear
derived:

accelerations in the steady state are quite small (abrupt

motions  are  now First, assuming that

motions like a sudden stop or a collision are not

covered). lincar accelerations or decelerations can be

reasonably well covered by process noises with the

constant velocity maodel. That is, the constant velocity

model plus a zero-mean neisc with an  appropriate

covariance representing the magnitude of acceleration
handle road. In

discrete time, the constant velocity model with noise is

can uniform  motions  on  the

given hy

1T 0O %12 0
10100 T 0
x(k) = 0 0 1 Tx(k—l)+ %TZ v(k-1)
0 0 01 0 T o)

where T is the sampling time (0.01 sec), x(k) is the
state vector including the position and velocity of the
preceding vehicle in the longitudinal () and lateral (

7) directions at discrete time k, Le.,
x(k)=[£(k) ECk) n(k) 76T {13
with € and 7 denoting the orthogonal coordinates of

the horizontal plane; and vV is a zero-mean (iaussiin

white noise representing the accelerations with &n

appropriate covariance @. If v(k) is the acceleraticn

increment during the kth sampling period, the velocity
v(k)T ,

during this period is calculated by and tle

position is altered by v(k)T2/2.
Secondly, a discrete-time model for turning s
derived

coordinated turn motion (Bar Shalom ct al, 2001, ).

from a continuous time model for  the
183). A constant speed turn is a turn with a constant
vaw rate along the road of constant radius of curvatur:.
However, the curvatures of actual roads are not
constant. Hence, a fairly small noise is added to a
constant speed turn model for the purpose of capturing
the variation of the road curvature. The noise in tle
model represents  the modeling  error such as  the
presence of angular acceleration and not constant radivs
with a4 constant

of curvature. For a vehicle turning

angular rate and moving with constant speed (the

magnitude  of the velocity vector s constant), tle

kinematic cquations in the (£,7) plane are

£ =-on(), 7(t)= &) (N

where £(f) is the normal (longitudinal) acceleration ard
7i(t) denotes the tangential acceleration, and @ is the
constant vaw rate (@ > 0 implies a counterclockwise
wrn). The tangential component of the acceleration s
cqual o the rate of change of the speed, i,
7(t)=dn()/dt =d(wé@))/ dt | and the normal component
is defined as the sguare of the speed in the tangential

dircction divided by the radius of curvature of the patn,

e, E@)=-n2@)/E@) =-0?E2O1E@® where 7()=0s().

—461—



The state space representation of (7)) with the state

vector defined by x(k) =[&(k) (k) n(k) (k)] becomes
x(t) = Ax(t) &)
where
010 o
000 -0
100 0 1
0w 0 O
The state transient matrix of the system (8) is given
by
1 sin ot 0 ~l—cosax
@ @
pr L 0 cosax O -—sinax
= 1-cos axt sin ax
0 1
@ @
0 sinax O cos ot 2

It is remarked that if the angular rate @ in (7) is
time varving, (9) wouldn’t be true any more. In the
sequel, following the approuch in (Bar-Shalom et al,
2001, p. 466), a "nearly” constant speed turn model in
discrete-time domain is introduced. In this approach. the
model itself is motivated from (9) but the angular rate
is allowed to vary.

A new state vector by augmenting the angular rate
ao(k) to the state vector of (7) is defined as follows:

x2(B)=[E(k) k) nk) n(k) ak)Y (1o
Then. the nearly constant speed turn model is defined
as follows [1, p. 467]):

sina(k-DT | _1-cosa(k-DT ]
w(k-1) a(k—-1)

0 cosw(k-DT 0 —sina(k-DT 0
PH®)=|o locosak-DT | sino(k-DT  Lk-1)
a(k-1) olk-1)

0 sino(k-HT 0 cosa(k-DT 0O
0 0 0 0 1

2 -
5 00
T 0 0
o T2 4V &-D
2
0 T 0 (1)
|0 0 T

where superscript a denotes the augmented value.

3. ProposedUnscentedKalmanFilterforTurning
Motion

3.1 The EKF for Constant Speed Turn Model
Since the model in (11) is nonlinear, the estimation

of the state (10) will be done via the EKF.

constant speed tum model of (11) can be rewritten as

The nearly

follows:
x? (k)= fO[x% (k- 1), 0(k - 1))+ Gk - v (k1) (12)
where the function f%() is known and remains

unchanged during the estimation procedure. The noise
transition matrix G(k-1) is the same form as the one
given in (11). To obtain the predicted state x%(k|k-1),
the nonlincar function in (12) is expanded in Tavlor
with

terms up to first order to yield the first order EKF.

series around the latest estimate x%(k-1]k-1)

The vector Tavlor series expansion of (12) up to first

order i1s

x4 (k)= f[37 (k-1] k—l),al(k~1)]+f; (k-Dix* (k-1

~%% (k-1 k-1]+HOT+ Gk~ (k-1) (13)
where HOT represents the higher-order terms and
a — ays a e
fx,, E-D=[V o f""0)T| a_ 29 (k-1jk-1)
[ sing(k-DT 1-cosa(k- )T ]
—_— 0 k-1
(k-1 a(k-1) fa),l( )
0 cos@(k-DT 0 -sino(k-DT  f,2(k-1)
=| . 1-cos@(k-1T sina(k - DT
o I N k_l
(k-1 k=1 fw,3( )
0 sind(k-DT 0 cosok-DT  fa(k-D| 1y
0 0 0 0 1|

is the Jacobian of the vector f evaluated at the latest
estimate of the state. The partial derivatives with

respect to @ are given by

for Té(k—1|k-Doosd(k—DT  &(k—1]k—Dsinik—1T

(k1) ak-1?
Tik—1|k-Dsind(k—DT (k1] k-1)-1+cosd(k—1)T)
ak-1) ak-1)2 ’

fo2 =—Té(k-l|k-l)sinc:;(k—l)-rﬁ(k-l|k—1)cosc3(k-1),
_ TEk-1]k-Dsina(k-DT _ (k1] k1)1 cosid(k—1)T)

To3 (k-1 axk-1)2
. Tr(k—1]k-Dcosixk-DT _r(k—1|k~Dsind(k-)T
k1) k-1 ’

Furt = TECk—1]k-Doosik -~ TA(k-1| k- Dsindk-1) (13)
Based on the above expansion, the state prediction

and state prediction covariance in the EKF are
(k| k=)= fO[2(k-1{k-D),0(k-1)],
P"(k|k-1)=f; (k—l)P"(k—llk—l)f;:(k—l)

(16)

+G(k-1)Q°% (k-1)G'(k-1) an
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where 0% is the covariance of the process noise in
(12). The details of the EKIF in an IMM

during one cycle are given in Table 1.

algorithm

Table 1. Summary of the EKF in an IMM algorithm
(one cycle).

Filtering

#(k|k-D=F2GEE-1|k-D,fk-D)

predicted estimate

P (klk—1)=f;(k—1)1{)'(k—llk—1)f;(k~1)

predicted covariance
+ Gk -DO%k ~DG'(k-1)

A
measurement residual | y(k)=z(k)- Hx® (k| k-1)

S(k)= HP? (k| k- ) H' + R(k)

residual covariance

filter gain K°%(k)=P°(k|k-D)H' S\ (k)

updated estimate x% (k| k) =z (k| k-1)+ K° (k)u(k)

P (k| k=P (k| k-D-K* (K)SB)K" (k)Y

updated covariance

A . _lysl
likelihood function A=N[v;0,5]=1228 V2 ¢ VS Y
xde probabilit p=tt
mode probability i
Xt A

32 The UKFforConstantSpeed TurnModel
Because of the well-known drawbacks of the EKF,
the unscented Kalman filter for constant speed turn

models is  used (Julier et al, 2000, Ristic and
Arulampalam, 2003).
Similar to the EKF, the UKF is a recursive

minimum mean square error estimator. But unlike the
EKF,

Tayvlor series expansion of the non-linear measurement

which only uses the first-order terms in the
equation, the UKF uses the true measurement model
and approXimates the distnbution of the state vector.
This state distribution is still represented by a Gaussian
density, but it is specified with a set of deterministically
chosen sample {or sigma) points. The sample points
completely capture the true mean and covariance of the
Gaussian random vector. When propagated though any
non-lincar system, the sample points capture  the
posterior mean and covariance accurately to the second
order. The main building block of the UKF is the
unscented transform, described below.

The unscented transform is a method for calculating
the statstics of a random vector which undergoes a
xe®R™ be a

non-lincar transformation. Let random

n n . .
vector, p:R™* >RV g non-linear transformation and

y=p(x). Assume the mean and the covartance of x are

¥ and Pr. respectively. The procedure for calculating

the first two moments of y using the unscented
transform is as follows (Julier et al, 2000):
) Compute (2n+1) cigma points % and ther

weights Wit

- Wo = X, ,
Xo=Xx, n, +x i=0,
1
_ Wi=— .
2i=x+(Jo +0P); 2n, +x)°  i=L-,ny
1
_ W,=—— .
li=x—(,/(nx+K)Px)i, ! 2(nx+x)’ i=ny+1,--2n.

(1&)
where x is a scaling parameter for fine tuning the
order moments  of  the and

higher approximation

W+ )P )i is the ith row or column of the matrix

square root of (y +x)Py.

2} Propagate cach sigma  point  through tho>
non-lincar function

§i=p(li) (i=09""2nx). (1%)

3) Calculate the mean and covanance of y as

follows:
2n,
j;= Zn,igi’
i=0
2n,
Py =3 Wi($i-7XSi- 7). N
b 20

Next the UKF filter for constant speed turn model
is derived as follows:

1) Using (18), compute sigma points zi(k—1|k-1)
and (i=0,--2n)
% (k-1lk-1 and P%k-11k-1).

2) Predict sigma points using state cquation (12) as

weights W corresponding  to

follows:
xi(klk=1= f2Lx; (k-1 k-D,o(k-1]. 1)
3} Compute the predicted mean and covariance of

the state varable x%(klk-1) and P%k|k-1), using

prediction  sigma  points  2i(k|k-DeR”  and their
weights W; i=0,--2n,
R 2n
Ok k-D=Y W;z;(k|k-D),
=0
2n
PO kIk-1)=0% + > Wil (ki k-1)-x" (k| k1]
i=0
LriCk|E-D-x" (k| E-D). 22
4) Predict measurement  sigma points  J;(kjk-1
using (2) as follows:
3k |k ~1)=hly;(k |k -1, 0(k)]. (21)
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9) Predict measurement and covariances

2n
29k k-0 =Y W;3;(k|k-D),
i=0

2
PL = R0+ ) (S, (k| k-D)~27 (k| k- DS, (k| k- D-2 (k| k-1,
i=0

2n
Pg = 3 Wily; (k| k~D- 3 (k| k-DIS; (k] k- - 2° (k| k- DY
i=0
(29)
where Pz'é and P are, respectively, the covariance
matrix of the measurement and the cross-covariance of
the measurement and state varable.
6) Compute the filter gain as

K°(k)=PL(PSy ", (25)
Update the UKF filter with measurement z(k) as

x4 (k|k)=x%k|k-D+ K (k)[z(k)-29(k|k-1)).  (26)

PO(k|k)=P*(k|k-D~ K (k)PLK* (k). (2D

Note that the UKF requires computation of a matrix
square root in (18), which can be done using Cholesky
factorization.

4. Conclusions

In this
operated in the automated container terminal was designed.

paper, a tracking algorithm for AGVs
As models 10 detect other AGVs, two Kinematic models
were derived: Constant velocity model for linear motion
and constant speed turn model for curvilinear motion.
For constant speed turm model, an unscented Kalman
the drawbacks of the
in  nonlnear systems. The
squares

filter was used because of
extended Kalman filter
suggested algorithm reduced the root mean
error for linear motions, while it can rapidly detect

possible turning motions.
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