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Abstract

Stochastic Neighbor Embedding(SNE) is a probabilistic method of mapping high-dimensional data space into a low-
dimensional representation with preserving neighbor identities. Even though SNE shows several useful properties, the
gradient-based naive SNE algorithm has a critical limitation that it is very slow to converge. To overcome this limitation,
faster optimization methods should be considered by using trust region method we call this method fast TR SNE.
Moreover, this paper presents a couple of useful optimization methods(i.e. conjugate gradient method and Newton's
method) to embody fast SNE algorithm. We compared above three methods and conclude that TR-SNE is the best
algorithm among them considering speed and stability. Finally, we show several visualizing experiments of TR-SNE to

confirm its stability by experiments.

1. Introduction

Dimensionality reduction is a fundamental problem in a variety of
areas such as machine learning, pattern recognition, exploratory data
analysis, data visualization, and so on. Many methods of embedding
objects, described by high-dimensional vectors or by pairwise
dssimilarities, into a lower-dimensional space, have been extensively
studied such as PCA, MDS[2], Laplacian eigenmap [1], Isomap(7],
LLE[S], and LLC[6]. Recently sochastic neighbor embedding (SNE)
was proposed as a probabilistic embedding method in [3]). In contrast
to other nonlinear dimensionality reduction methods, SNE is a
probabilistic approach that preserves the distribution of neighbor
identities. The probabilistic framework on dimensionality reduction
makes it easy embedding without any constraints. However, SNE
using a steepest descent method (which considers only gradient
information) to find optimal solution, it suffers from the slow
convergence. To solve this problem we suggest SNE based on trust-
region method named TR- SNE, and compare TR-SNE with SNE
based on other optimization algorithms such as Conjugate Gradient,
and Newton methods. From the results of experiment we conclude
TR-SNE is the best algorithm in the way of both speed and stability.

2. Stochastic Neighbor Embedding
Denote by X, € | D an object described by a D -dimensional
I3

vector. The vector X € | oV is a long vector that is constructed by
stacking {x,} in a single column. The image of X, is denoted by

u
y, €? ? (d D)and the vector ye i ¥

similar manner. The original SNE algorithm [3] is described below.
Step 1 Neighbors Selection Select neighbors by &

neighborhoods or K nearest neighbors,

Step 2 Computing Dpjand q; Compute the probability, Py,

is constructed in a

that X; would pick X 7] found in Step 1 as its neighbor:
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b= exp(-d;)
T 2ene(d)

where d,j are dissimilarities between two objects X; and X; in

M

the high-dimensional space and O, is a Gaussian kernel width

usually set by hand. The dissimilarities are computed by the
scaled Euclidean distance

2
)
d? =———|| — )
R

In the low-dimensional space, the induced probability q; (with

a fixed variance) that the image y; pick y ;a8 its neighbor, is
described by
2
exp(-|y, - | o
q; = T .
DI R D

Step3 A _Cost Function The aim of the embedding is to match

Py and g as well as possible. This is achieved by minimizing
a cost function, sum of Kullback-Leibler divergences between
p; and q; for each object. The cost function is given by

C=22p,j log& @
i 9y

S‘t‘ep4 Embedding through Steepest Descent The set of images,
Y in the lower-dimensional space, are updated by a gradient-
descent method which has the form
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1, !
(k+1) (k)
y =y —a®vc® 5
where is a learning rate and the gradient VC is given by
T T
oC oC
VC=|| — ’K ’ (6)
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a-=zz(yi—yj)(pif—qij+pji_qji)‘ Q)]
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3. Trust-Region methods

Trust-region methods (4] define a region around the current iterate
within which they trust the mode! to be an adequate representation of
the objective function, and then choose the step to be the approximate
minimizer of the model in this trust region. In effect, they choose the
direction and length of the step simultaneously. If a step is not
acceptable, they reduce the size of the region and find a new
minimizer. In general, the step direction changes whenever the size of
the trust region is altered.

Trust Region . L
—y  line search direction

Trust region step

Contours of

Fig. 1. An illustration of the trust-region method

Fig. 1 illustrates a trust-region approach for the minimization of an
objective function C in which the current point lies at one end of a
w

curved valley while the minimizer ), lies at the other end. A

quadratic model function m® , whose elliptical contours are shown
as dashed lines, is based on function and derivative information at

Y  and possibly also on information accumulated from previous
iterations and steps. A line search method based on this model
searches along the step to the minimizer of m® , but this direction

allows only a small reduction in C even if an optimal step is taken.
A trust-region method, on the other hand, steps to the minimizer of

m™® within the dotted circle, which yields a more significant
u

reduction in C and a better step. And, the step D is obtained by

solving the following subproblem:
. u s 10 ur

min m® (p)=C®+[VC®T p+=pBPp ®

ol 2707
There are three strategies for finding approximate solution of Eq. (8).
The first strategy is the dogleg ,the second strategy is the fwo-
dimensional bspace minimi ,the third strategy is the
Steighaug's approach. (See Ch. 4 and 6 in [4] for further details)
Trust-region methods guarantee the global convergence, which is
stated in the theorem. (See theorem and proofiin [4])
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4.Conjugate Gradient methods for SNE algorithm

Our interest in the conjugate-gradient method to fast SNE algorithm is
twofold. It is one of the most useful techniques for solving large
systems of equations (In general, SNE becomes large-scale problem as
number of the data points grows.), and it can also be adapted to
nonlinear optimization problems (Objective function Eq. (4) is
nonlinear equation to be optimized.). We choose Fletcher and
Reeves'(Fletcher and C.M.Reeves, 1964) nonlinear conjugate-gradient
method to solve SNE (we name it FR-CG-SNE) since objective
function is not convex quadratic function. It is one of the earliest
known techniques for solving large-scale nonlinear optimization
problems. The key features of this algorithm are that it requires no
matrix storage and is faster than the steepest descent method. Fletcher
and Reeves showed that an extension is possible by making two

sliﬁ_nple changes in Linear Conjugate gradient. To make direction of
(k)
P adescent direction , step length must satisfy the strong Wolfe

conditions, or Armijo backtracking conditions. . {See Ch. 3 and 5 in
[4] for further details)

5. Newton methods for SNE algorithm

Pure Newton method with unit steps converges rapidly once it
approaches a minimizer. This simple algorithm is inadequate for
general use, however, since it may fail to converge to a solution from
remote starting points. Even if it does converge, its behavior may be
erratic in regions where the function is not convex. To obtain global
convergence , converging to stationary point, we require the search

Wk -t
direction p =—-V2C(y(k)) VC(y(")) to be a descent

direction, which will be true here if the Hessian VZC(y(k)) is
positive definite. However, if the hessian matrix is not positive

(k)

definite or is close to being singular, p may be an ascent

direction, To guarantee stability, we modify the Hessian matrix B®
as VC(y®)+ E(k), where E(k)=0 it V’C(y®) s
sufficiently positive definite; otherwise, £ (k) is chosen to ensure
that B® is sufficiently positive definite. We use hessian matrix
VZC(ym). In the update rule given by y(M) = g(k) + a(k);(") ,
step size a(k) is required to be satisfied the Wolfe, Goldstein, or
Armijo backtracking conditions.

6. Trust-region methods for SNE algorithm

The trust-region method require a model Hessian maltlrix B . since it

is possible to compute the exact Hessian V2C(y) in SNE, we
u
replace B in Eq. (8) by VZC (y) . The Hessian matrix

u
VZC(y) g ™ is computed as

o*C L 0*C
o | P
vic(y)sl M O M ©
o’C L o°’C
v oo
where
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o°C
.0y,
Note that p; is asymmetric, so B is also asymmetric. Therefore we

T+B

==2(p;—4q;* Dy —qij)diag(yli’K »Ya)-(12)

instead of B .

use a symmetric form defined by B

We use the Steihaug method which employs the conjugate-gradient
(CG) method with a Steihaug’s termination test. Compared to the
dogleg and the subspace method where solving the linear system of

involving B or (B +al ) (for some @ €| ) is costly, the
Steihaug method is a TR-Newton- CG when B is an exact Hessian

of the objective function. The Steihaug method has several attractive
properties: (1) It requires no matrix factorization, so we can exploit

the sparse structure of the Hessian V2C without worrying about fill-
in during a direct factorization; (2) When the Hessian matrix is
positive definite, the Newton-CG method approximates thwure
Newton step more and more closely as the solution Y, is
approached, so rapid convergence is also possible. When Hessian
matrix is not positive definite, we can make it positive definite by

adding A/ . In this paper we use TR Newton-CG method
implemented through the fminunc in Matlab Toolbox.

7. Numerical Experimental Results
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Fig.4. The embeddmg of USPS data (digit 0~4)

The experiment was carried out with USPS digit data. To avoid very
similar pairs like 3 to 5 or 7 to 9, we only consider five classes
(0,1,2,3, and 4) are randomly selected. The comparison of the average
execution time as the number of data points grows, is drawn in Fig. 2.
Also it shows plots of the value of the objective function versus the
number of iterations in Fig. 3. We can see the convergence rate of
TR-SNE is superior to either the original SNE or CG-FR-SNE. Both
the convergence rate and execution time of the modified Newton’s
SNE seem to be slightly better than those of the TR-SNE, however,
modified Newton’s SNE tend to be unstable as an initial state. As a
result, TR-SNE is about 2--6 time as fast as FRCG-SNE and GRAD-
SNE. Fig. 4. presents the embedding result for USPS data using TR-
SNE.

8. Conclusion

The original SNE algorithm based on the steepest descent method
suffered from its slow convergence. Trust-region methods guarantee
the globally linear and locally quadratic convergence rate. We have
presented a fast SNE algorithm, TR-SNE, which employed a trust-
region method. Moreover, we described CG-FR-SNE, and Modified
Newton SNE, comparing TR-SNE with both two method in
experiment results we conclude that TR-SNE is superior to these
algorithms considering its convergence rate and stability. Also, it is
plain that TR-SNE has the high performance and fast convergence
compare with SNE based on steepest descent method through several
numerical experiments and basic theorems.
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