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Problem Solution of Linear Programming
based Neural Network
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Abstract -Linear Programming(LP) is the term used for defining a wide range of optimization problems in which the
objective function to be minimized or maximized is linear in the unknown variables and the constraints are a
combination of linear equalities and inequalities. LP problems occur in many real-life economic situations where profits
are to be maximized or costs minimized with constraint limits on resources. While the simplex method introduced in a
later reference can be used for hand solution of LP problems, computer use becomes necessary even for a small number
of variables. Problems involving diet decisions, transportation, production and manufacturing, product mix, engineering
limit analysis in design, airline scheduling, and so on are solved using computers. This technique is called Sequential
Linear Programming(SLP). This paper describes LP’s problems and solves a LP’s problems using the neural networks.
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1. Introduction

A Linear Programming(LP) problem seeks to optimize a
linear objective function subject to a set of linear function
constraints and non_negativity constraints. Many real-time
systems, such as machine vision in robotic operations and
large-scales systems, such as personnel and equipment
maneuvers in military operation, require solving large-scale
LP problems in real time. In such applications, existing
sequential algorithms such as the classical simplex method
are usually not efficient due to the limitation of sequential
processing.

Neural Network(NN)s have been

proposed for solving various optimization problems[i]. A

In recent vyears,

NN consists of a number of massively connected simple
neurons that operate concurrently in a parallel distributed
fashion. While the mainstream of the NN approach to
optimization has focused on combinatorial optimization
problems, a number of NN paradigms have been proposed
for solving LP problems. So to speak, Tank and Hopfield
demonstrate the potential of the Hopfield network for
solving LP problems via an example[2]. Kennedy and
Chua analyze the Tank and Hopfield LP circuit and Chua

and Lin nonlinear programming circuit from a
circuit-theoretic viewpoint and reconcile a modified
canonical nonlinear programming circuit that can also be
applied for LP[3][4]. Rodriguez et al. develop
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switched-capacitor NN for linear and nonlinear
programming[5). Maa and Shanblatt analysis the properties
of the recurrent NNs linear and quadratic
programming[6]. The results of these investigations have
demonstrated great potential and shed much light on the
NN research. However, none of the paradigms can be

theoretically guaranteed to generate optimal solutions to

for

linear programs.

Recently, Wang proposed a class of recurrent NNs for
optimization[7]. This particular class of recurrent NNs has
been proven to be able to generate optimal solutions to
In this class of current NNs, the
interconnection weights are essentially time-varying.
Although a block diagram of the proposed NN is presented
in which two dummy neurons are defined to circumvent
the time-varying connection weight, the complexity of the
NN  configuration still makes circuit realization
challenging[8].  Problems decisions,
transportation, production and manufacturing, product mix,
engineering limit analysis in design, airline scheduling, and
so on are solved using computers. This technique is called
Sequential Linear Programming(SLP). This paper describes
LP’'s problems and solves a LP’s problems using the
neural networks.

linear programs.

involving  diet

2. Linear programming Problem

The general form of the LP problem has objective
function to be minimized or maximized, and a set of
constraints.

maximize : (1)
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subject to

CaTy + Cpy + CgLg +- - et e, b

: LE constrains(i =1 to [) (2)
Cpy + CpZo+ CpTyteo or bz, <b;

: GE constrains(j =141 to [+71) 3
CuZy+ Cpao+ Cpgy +-0 o0 ez, < by

: EQ constrainstk=j+r+! to |+r+q) (4)
¥z, 20,2, 20, =+ o0 oot ,Z, = 0.

We note that the number of constrains is m=[+r+gq,
¢; and a; are constant coefficients, b; are fixed real
constants which are adjusted to be non-negative, and ;

be determined. In
engineering design problems, the z; are referred to as

are the unknown wvariables to

design variables.

Standard form of the LP is one in which all constrains
are converted into the equality(EQ) type. LE-type
are converted into equalities by adding a
non-negative variable z;(i =1 to L), called a slack

constrains

variable, on the left-hand side. GE-type constrains are
converted into equalities by subtracting a non-negative
variables Z; (j=1I+1 to l=r), called surplus variables.
Variables unrestricted in sign, also called free-variable, can
be brought into the standard form by expressing each,
such variable as a difference of two non-negative
variables and substituting into previous relations. In the
standard form b > 0..

3. The dual simplex method

In some problems, basic feasible solution may mot be
readily available for the primal problem while the dual
feasible solution(satisfying primal optimality) is available.
The dual simplex method is a natural choice for these
problems. The steps are very similar to the conventional
simplex method discussed earlier. Here we maintain with
the primal simplex procedure, the points generated by the
dual simplex procedure are always optimal during the
iterations in that the cost coefficients are non-negative;
however, the points are infeasible(some basic Z; <0). In
the dual simplex method, the iterations terminate when we
achieve a feasible point. The following example and fig. 1
illustrate the dual
two—variable problem.

2@1 + Ty ()
2$1 + 5.'1;2 = 20, I, ‘+‘CL'2 =6 (6)

The two-variable problem is illustrated graphically in
Fig. 1.

simplex procedure. Consider the

minimize

subject to

X2

X1
X3=0

X4=0

Fig. 1. Dual method
4. Linear programming of neural network

The LP NN emulates the first order dynamical systems
associated with the dual simplex method: an imaginary
point with no mass in a time-evolving gradient vector

field y(w,t), of the augmented barrier functions F,,.
The evolution of the point is governed by a set of
differential equations involving the local gradient. Use the
vector of slack variables w(z)=b— Az > 0 to define the
vector w'(z,t). It is defined by w(z,t) =[g(t) - w;(x)]" "

The gradient of f, () is computed as y(z,t) = ¢ — A'w (z, ).
The essence of the dual simplex method is this: if the initial
point z° lies in the interior of the feasible region, and if the
gain term g(t) increase with time, then z(t) converges to

max ¢

an optimal solution of z CT such that Az < b.
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Fig. 2. Linear programming of neural network

Fig. 2 shows a small version of the LP NN, in
particular, one that 4-constraints and 2-variables inequality
constrained LP problem. There four types of neurons in

this architecture; those that output x;,w,’,c; and b;. Let us
assume that z° denotes once again a known strictly
interior feasible point(Az® < b). In the complete system of
differential equations for the dynamical system, the x;

neurons are initialized to xj:xg and governed by the
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equation

d’l;- e ’ .
—d—t-L = cj— ;A'ijwi for all 2- (7

The w’ neurons are initialized to satisfy w=>b— Ax°.

They are governed by the equation

dw; Z
r dtl = w,+b,— z‘}Ai].xj for all i (8)

=

and the nonlinear transformation
w' = f(w,t) 9

More explicitly,

1

w;,t) = —~— (10)
Tl t) = 2o

where g(t) is a monotonically increasing function of
time and 7 is vary small compared to the scale of icil.(t]_

The ¢; and b, neurons are kept constant at all times.
Differential equation (8) is derived form the definition
w(z)=b—Ar >0 of the slack variables. The time
derivative of w(z) is equated to the deviation
d(t)=—w(x)+b—ax. When the
stabilizes, the satisfied with d(t) =0.
Otherwise, (8) w(z) to d(t). The

connection strengths are unity for all ¢; and b; neurons,

dynamical system
definition is
Servos reduce
while the w, and Z; neurons are fully interconnected with
bidirectional weights —A,-J-. No real-time learning or weigh
_Aijv Gj

and b, where 1<j<n and 1 <i<m, are set at t=0

adaption occurs in this system. The parameters

and do not change through the convergence of the
system[9].

5. Solution of linear programming problem
using neural network

The first step is to write the first tableau by
introducing the surplus variables. We make the coefficients
of the surplus variables positive by multiplying throughout
by -1, and we do not require any artificial variables.

Table 1. First Tableau (corresponds to point A)

T T 3 T4 Ts | rhs.
/ 2 1 0 0 0 0
x -2 -5 1 0 0 -20
x4 -1 -1 0 1 0 -6
T5 -3 -1 0 0 1 -9

Note that the first row coefficients are positive, which
implies primal optimality or dual feasibility. However, the

basic solution is infeasible since each of 3 z, Zs is

negative.

Elementary row operations are performed for this pivot
to make the number unity at the pivot and the rest of the
coefficients in that column zero.(See point B in Fig. 1.)

Table 2. Second Tableau (corresponds to point B)

b T Z3 T4 s | rhs.
/ 16 0 0.2 0 0 -4
S 0.4 1 -0.2 0 0 4
Ty | -06 0 -0.2 1 0 -2
x5 | -26 0 -0.2 0 1 -5

The pivot row is the third row corresponding to z, and

the pivot column is 1. The third tableau follow naturally.

Table 3. Third Tableau (corresponds to point C)

T T 3 T o5 | rhs.
/ 0 0 | 0077 | 0 | 0615 |-7.077
D) 0 1 -0.231 0 0154 | 3231
x, 0 0 -0.154 1 -0.231 | -0.846
) 1 0 0.077 0 -0.385 | 1.923

Table 4. Fourth Tableau (corresponds to point D)

x; T T3 x s | rhs.
f 0 0 0 05 | 05 | -75
Ty 0 1 0 -15 05 45
I3 0 0 1 -6.5 15 55
] 1 0 0 05 -05 15

Primal optimality has been achieved while maintaining
the dual feasibility. The solution is Z1=1.5, x,=4.5, and the

function value is 7.5(flipping the sign for the minimum
problem).

6. Conclusion

In this paper, we described a NN architecture that can
solve classical LP problems with a massively parallel
algorithm. The algorithm
barrier function approach to LP. In other to solve  the
simulated LP
problems using the differential-equation approach. Thus

is based on the logarithmic

basic dynamics of these network, we
far, we have simulated the effects of limited numerical
precision of analogue devices and of random noise that
may be described.
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