Sound Radiation Analysis for Structure Vibration Noise Control of Vehicle Tire under The Action of Random Moving Line Forces

Kim, Byoung-sam
Dept. of Automobile & Machinery, Suncheon First College, anvkbs@suncheon.ac.kr

불규칙 이동분포하중을 받는 차량 타이어의 구조 진동소음 제어를 위한 음향방사 해석
김 병 상
순천제일대학 자동차기계과

Abstract
A theoretical model has been studied to describe the sound radiation analysis for structure vibration noise of vehicle tires under the action of random moving line forces. When a tire is analyzed, it has been modeled as curved beams with distributed springs and dash pots that represent the radial, tangential stiffness and damping of tire, respectively. The reaction due to fluid loading on the vibratory response of the curved beam is taken into account. The curved beam is assumed to occupy the plane y=0 and to be axially infinite. The curved beam material and elastic foundation are assumed to be lossless Bernoulli-Euler beam theory including a tension force, damping coefficient and stiffness of foundation will be employed. The expression for sound power is integrated numerically and the results examined as a function of Mach number, wave-number ratio and stiffness factor. The experimental investigation for structure vibration noise of vehicle tire under the action of random moving line forces has been made. Based on the Spatial Transformation of Sound Field techniques, the sound power and sound radiation are measured. Results strongly suggest that operation condition in the tire material properties and design factors of the tire govern the sound power and sound radiation characteristics.

2. Theoretical Background
Fig. 1 shows a curved beam or ring model of the tire. The tire is assumed to be a thin elastic ring, or the curved beam that sustains a tension of elastics base.

1. Introduction
The tire noise in automobiles is one of the major sources of noise pollution. Structural vibration in a tire exerts a great influence on automobile noise. Consider the aftermath of a survey about the correlation between tire noise source and its contributing factors. In this paper, the tire is assumed to be curved beam that is considered by basis hardness, basis damping, and tension. Relative sound power that radiates from the curved beam is interpreted when random moving distribution load acts to the curved beam. It is the purpose of this paper to examine sound radiation characteristics from structural vibration in tires.
circular beam. Applying damping and tension force to the equation of motion by the rotation and centrifugal in the radial direction. The problem of sound radiation is studied by using statistically distributed force in the surface of the tire. The statistically distributed forces are expressed as the irregular random functions in the surface coordination on the tire.

Assuming an input function transmitted from road surface to stationary ergodic function, the input function can be processed as a deterministic function in the frequency band. The quality of input function inside concerned frequency band is road surface that is determined by roughness and the number of vibrations on irregular road surfaces.

![Fig. 2 The motion of a random force F(t) along the tire](image)

According to the road surface's property of road surface, power spectrum density of random moving distribution load forced tire was assumed to be in inverse proportion to the square of the frequency. It is shown in Fig. 3.

\[
S(\omega) = \frac{S_m}{\omega^2}
\]

\[
\overline{E[W]} = \frac{\rho_o S_m}{(\omega_\omega A)^2} \int \frac{1}{(\omega_\omega M)^2} \frac{1}{\omega^2} \frac{(\omega_\omega A)^2 (\omega + \sqrt{\omega})^2}{[(\omega_\omega + \sqrt{\omega})^2 - \zeta^2] \sqrt{\omega}} \frac{\sin(\sqrt{\omega} \cdot \xi)}{\xi^2} \, d\xi d\omega
\]

(2)

For doing non-dimensional structure impedance in the wave number field in the equation (4). It can be written as equation (5).

\[
\zeta_n = \rho_o A \left[(\omega_\omega r^2 + 2\omega_\omega r^2 + 2\omega_\omega r^2 + \frac{\omega_\omega}{\omega_\omega r^2} - \omega_\omega r^2) \right]
\]

(5)

Equation(4) would become non-dimensional, it could be as equation (6).

\[
\Pi = \frac{\rho_o S_m}{\rho_o S_m} \overline{E[W]}
\]

(6)

3. Numerical Analysis

Relative acoustic power was analyzed, according to the change for the factor of tire vibration quality when the tire sustained by elastic-damping foundation, as well as acted by tension is vibrated by random line force at the fixed speed. The fluid loading as acoustic media which touch with the tire is considered divided into light fluid loading (For example: air) or heavy fluid loading (For example: water). Acoustic impedance in the process of numerical analysis also is ignored, because acoustic impedance by tire vibration is much far less than structure impedance. Irregular load forcing tire was supposed to normal process. Also, the loss
factor was considered by structural damping of tire. The sound waves that progress from the tire border to outside direction radiate acoustic energy in the range, that the structural wave number is more than the acoustic wave number, but it does not radiate acoustic energy in the range that the acoustic wave number is more than structure.

The ranges of the frequency of excitation from both tire radius and road surface, the length of random moving line force, and the wave length, are equal to following when the vehicle is driving at 40-150 km/h.

In the case of low frequency \(\gamma << 1 \)

\[
\Pi = \frac{\alpha^2 \sqrt{\alpha^2 - \xi^2} \sin(K_o \xi)}{K_o \xi} \frac{d\xi}{\left(-\alpha^2 + \psi^2 - \xi^2 \right)^2 + \left(2 \beta \psi \alpha \alpha^2 - \xi^2 \right)^2}
\]

(1) In the case of the tire under light fluid loading \(\alpha_o / \gamma^2 << 1 \)

\[
\Pi = \frac{\alpha^2 \sqrt{\alpha^2 - \xi^2} \sin(K_o \xi)}{K_o \xi} d\xi
\]

(2) In the case of the tire under heavy fluid loading \(\alpha_o / \gamma^2 >> 1 \) after assuming \(\beta \psi << 1 \)

\[
\Pi = \frac{\alpha^2 \sqrt{\alpha^2 - \xi^2} \sin(K_o \xi)}{K_o \xi} d\xi
\]

4. Experiment

The tire used in the experiment for structural vibration noise measurement consists of both a radial tire that is actually installed on a car and an experimental tire that changes design factor in limited extent. In addition, the changed design factors in that the tire used in the experiment is a 195/65R14. Fig.4 is the schematic diagram of a tire structural vibration noise test. Establishing load condition after attaching the tire loading equipment, we can control the travel speed of the tire using a chassis dynamometer. The preliminary operation is practiced to satisfy a fixed experimental condition for 10 minutes at 80 km/h. Then, the microphone is installed at the point. 25 cm over the surface of land as at horizontal distances, 1m from the tread center to measure sound pressure that radiates from tire sidewall. In the case of using the STSF Technique, a microphone is installed at the point, 60 cm, horizontal distance from the sidewall. 20 cm over the surface of land, and its interval distance is 20 cm.

Fig.4 Schematic diagram of a tire structural vibration noise test

In Fig.5, Nach number involved in velocity of random moving distribution load is 0.2, wave number ratio is 0.07, non-dimension damping coefficient is 0.025 and non-dimensionational tension coefficient is 0.105.1.0.15. These are the result of numerical analysis of relative sound power about increment of critical acoustic relative acoustic power slightly increased as non-dimension tension coefficient increased; however, as the critical acoustic length increased relative acoustic power also increased. From this viewpoint, we can assume that air pressure and load inside the tire affect relative acoustic power.

Fig.6 is the relative sound power level of critical acoustic length (Nach number, N=0.2, non-dimensional damping coefficient=0.025, wave number ratio=0.03, 0.05, 0.08, 0.11). When the wave number is in the region of low frequencies, relative sound power increases. Fig.7 is the relative sound power about increasing non-dimension tension coefficient when Nach number=0.2, non-dimensional damping coefficient=0.025, tension coefficient=0.105.1.0.
1.5. Resonance radiation generated from the near wave number ratio=0.04, increases the relative sound power.

Fig. 5 Relative sound power level versus critical acoustic-length

Fig. 6 Relative sound power level versus critical acoustic-length

Fig. 7 Relative sound power level versus wave-number ratio

5. Conclusions

The results of the study on structure vibration noise control of tire forced random moving distribution load, and sound radiation analysis for low noise tire design shows the following. If non-dimension tension coefficient involved with tire inside air pressure is increased, relative acoustic power increased slightly. And according to increase critical acoustic length related to forced load of tire, relative acoustic power was decreased. But in the low frequency field, if the wave-number ratio increases, relative acoustic power increases as well. In the area of wave number ratio corresponding to forced frequency involved with the running velocity of tire, the relative acoustic power for resonance radiation of tire noise energy was increased significantly. Also wave number ratio produced resonance radiation moved when wave number ratio decreased. If the non-dimensional damping coefficient involved with tire of physical characteristic is increased, relatively acoustic power decreased significantly. It affected the tire bending tension and quantity of matter.

References