Growth and optoelectrical properties for Cd$_{1-x}$Zn$_x$S thin films by Hot Wall Epitaxy method

Sang-Youl Lee, Kwang-Joon Hong
Department of Physics, Chosun University, Kwangju 501-759, Korea

Abstract

The Cd$_{1-x}$Zn$_x$S thin films were grown on the Si(100) wafers by a hot wall epitaxy method (HWE). The source and substrate temperature are 600°C and 440°C respectively. The crystalline structure of eplayer was investigated by double crystal X-ray diffraction(DCXD). Hall effect on the sample was measured by the van der Pauw method and studied on the carrier density and mobility dependence on temperature. In order to explore the applicability as a photoconductive cell, we measured the sensitivity(y), the ratio of photocurrent to darkcurrent(pc/dc), maximum allowable power dissipation(MAPD), spectral response and response time. The results indicated that the photoconductive characteristic were the best for the Cd$_{0.95}$Zn$_{0.05}$S samples annealed in Cu vapor compare with in Cd, Se air and vacuum vapour. Then we obtained the sensitivity of 0.99, the value of pc/dc of 1.65×107, the MAPD of 338mW, and the rise and decay time of 9.7ms and 9.3ms, respectively.

1. 서 론

Cd$_{1-x}$Zn$_x$S는 II-VI족 화합물 반도체로서 산업에서 에너지 밴드갭이 2.42eV에서 3.65eV이고 짧은 밴드갭 구조를 갖기 때문에 발광효율이 높고, 광소자, 넓리 쓰이며 특히 청색 LED로서 용용성이 기대된다. Cd$_{1-x}$Zn$_x$S 박막은 진공증착, e-beam 증착, HWE(thermal wall epitaxy), 스프레리버와 용액증착법, CVD법등으로 제작될 수 있다. 이 방법 가운데 HWE 방법은 증발원의 물질을 직접 가열하여 기체상으로 기판에 도달하고 용절되어 박막이 상장하도록 하는 방법인데 열역학적인 평형상태에 가까운 조건에서 결정을 성장시키므로 양질의 박막을 만들 수 있고, 시료의 순실을 줄일 수 있으므로 대담으로 생산할 수 있다는 장점이 있다. 본 연구에서 HWE 방법을 이용하여 Si(100) 기판에 Cd$_{1-x}$Zn$_x$S 박막을 성장시켜 결정성은 이중 요동 곡선(double crystal rocking curve, DCRC)의 반요동(FWHM)로부터 측정하였다. EDS(Energy Dispersive X-ray Spectrometer)를 이용하여 조성 비율 확인하였으며 van der Pauw method로 Hall 효과를 측정하여 운반자 농도와 Hall 이동도의 온도 의존성을 연구하였다. 또한 광전도 셀의 특성을 알아보기 위해 Cd, Zn, S, Cu, 진공, 공기 분위기에서 열처리하여 스펙트럼 응답(spectrum response), 감도(sensitivity : y), 최대 허용 소비전력(maximum allowable power dissipation : MAPD), 광전류(dc)와 압전류(dc)의 비 pc/dc 값을, 응답시간(rise time, decay time)을 측정하였다.

2. 실험 방법

2-1. Cd$_{1-x}$Zn$_x$S 박막성장

Cd$_{1-x}$Zn$_x$S 박막은 Fig. 1과 같이 진공조 셀의 hot wall 전기로와 기판으로 구성된 HWE 방법을 사용하여 성장하였다. 전기로는 직경 0.5mm 텅스텐선을 직경 35mm의 석영관에 감아 만들었으며, 전기로 둘레의 열차폐와 원통은 스텐레스를 사용하여 열효율을 높이기위해 석영관에 금을 중착하여 사용하였다. 증발원은 Aldrich사 순도 5N의 Cd(Zn)S 분말을 사용하였다. HNO$_3$와 HF를 8515로 혼합하여 chemical etching한 Si(100) 기판과 증발원을 HWE 장치 속에 넣고 내부의 진공도를 10$^{-6}$torr로 배기시킨 후 Cd$_{1-x}$Zn$_x$S박막을 성장하였다. 이때 Cd$_{1-x}$Zn$_x$S
중발원의 온도를 600℃, 기판의 온도를 440℃로 하여 0.5μm/hr 성장 속도로 성장하였다.

2.2. 광전도 특성
스펙트럼 응답을 측정하기위해 광전도 셀에 직류 전원을 연결하여 탄력성으로 조사하면서 나오는 광전
류를 lock-in-Amp (PAR, 5280)로 측정하고 X-Y기
목계 (MFE, 815M)로 기록하였다. 이때 헬로겐 램
프 (650W)에서 나오는 빛을 light chopper (PAR, 19)를 거쳐 monochromater (Jarrel Ash, 82-020, 0.5m)로 분리하여 탄력성으로 사용하였다. 광전도
셀의 갑도는 조도에 따른 센의 저항 변화로써 텐스
텐 램프를 광전으로 하여 조도를 10 lx에서 1000 lx
까지 변화시키는 센의 저항을 펌피터(philips, PM2528)로 측정하였다. pc/dc 비율 구하기 위해 광전
류와 압전류는 3000 lx와 0 lx 상태에서 1.5V의
인가전압을 가하여 헛스를 전류로 측정하였다. 최
대 헛스 소비전력은 300, 500, 800 lx로 고정시킨 후 공급 전압을 1V에서 점
점 증가시키며 조사에 의한 전류대 전압 특성의
정량이 변연되어 나타났으며 증가하였다. 이때 조도는 조도계 (HS, HS-LA)로 측정하고 전류는 멀티미터 (philips, PM2528)로 측정하였다. 응답 시
간을 측정하기 위하여 광원인 텔스텐 램프에서 나
오는 빛을 light chopper를 거쳐 센에 조사하였고, 헛스는 광전율을 오실로스코프 (GS, 7040A)에 연결
하여 시간에 따라 변화하는 광전도의 변화를 측
정하였다. 이때 Cd1-xZnS의 열처리 조건은 다음과
같다.

3. 결과 및 고찰
3.1. Cd1-xZnS의 결정구조
HWE에 의한 Cd1-xZnS 박막의 성장은 우선적으
로 Si 기판의 불순물을 제거하기 위하여 chemical
etching 한 후 기판의 온도를 780~820℃로 변화
시켜 에비 가열하였다. 이러한 조건에서 Cd1-xZnS
박막을 성장시키 이중 결정 X-선 요동 곡선 (DCRC)
을 측정한 결과 반복치 (FWHM)는 거의 변
화하지 않았다. 또한 불순물이 제거된 Si 기판 위에
성장된 박막의 결정성은 성장하는 동안 증발한 및
기판온도와 같은 성장조건에 관계없이 최적 증발
원의 온도를 600℃로 고정하고 기판의 온도를 변화
시켜 성장하였다. 성장된 박막들의 이중결정 X-선
요동곡선 (DCRC)의 반복치 (FWHM)를 측정한 결과
가장 좋은 성장 조건은 기판의 온도가 440℃였으며 이때 반복치 (FWHM)는 Fig. 2에서와 같이

265 arcsec 였다.

<table>
<thead>
<tr>
<th>Table 1. Annealing conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samples</td>
</tr>
<tr>
<td>Cd1-xZnS : Cd</td>
</tr>
<tr>
<td>Cd1-xZnS : Zn</td>
</tr>
<tr>
<td>Cd1-xZnS : S</td>
</tr>
<tr>
<td>Cd1-xZnS : vacuum</td>
</tr>
<tr>
<td>Cd1-xZnS : air</td>
</tr>
</tbody>
</table>

Cd1-xZnS 박막의 성분 및 조성은 EDS(energy dispersive X-ray spectrometer) 스펙트럼을 분석하
여 구하였다. Fig. 3은 조성 X=0.5인 Cd1-xZnS 박막의 EDS 스펙트럼을 보여 주고 있으며 이
спект럼으로부터 측정되어진 값은 Cd1-xZnS의 경우 올
받시 50%였는데 측정된 결과는 53%, Zn의 경우
올받시 50%였는데 측정된 결과는 47%이어서
Cd0.5Zn0.5S 박막으로 성장되었음을 알 수 있었다.

Fig. 2. Double crystal X-ray rocking curve of Cd1-xZnS epilayer

3.2. Hall 효과
HWE 방법으로 성장된 CdS, Cd0.5Zn0.5S, ZnS
박막을 van der Pauw 방법으로 293K에서 33K까지
변화시키면서 측정한 값을 Table 1, 2, 3에 보였
다. 이 때 Hall 계수들은 음의 값이어서 n형 반도체
임을 알 수 있었다. CdS, Cd0.5Zn0.5S, ZnS 박막의
온차가 높고 Hall 이동도의 온도 의존성은 Fig. 4
와 5, Fig. 6과 7, Fig. 8과 9에 각각 보였다. CdS
인 경우 Fig. 4의 ln n에 I/T에서 환원화 에너지
은 0.51eV였고, Fig. 5로부터 Hall 이동도를 Fujita
등의 결과와 같이 30K에서 200K까지는 압전상산
(piezoelectric scattering)에 따라 감소하는 경향이
있고 200K에서 293K까지는 극성산란(polar optical
scattering)에 따라 감소하는 계함으로 있을음을 알 수 있다. Cds_{0.5}Zn_{0.5}S의 경우 Fig. 6에서 활성화 에너지는 0.29eV이고 Fig. 7에서 Hall 이동도는 30K에서 130K까지는 분율을 산란(impurity scattering)에 따라 감소하는 계함으로 있고 130K에서 293K까지는 각자 산란(lattice scattering)에 따라 감소하는 계함으로 있을음을 알 수 있다. 또한 ZnS의 경우 Fig. 8로부터 구한 활성화 에너지는 0.19eV이고 Fig. 9로부터 Hall 이동도는 30K에서 150K까지는 분율을 산란 (impurity scattering)에 기인하고 있으며 150K에서 293K까지는 각자 산란(lattice scattering)에 의존하고 있을음을 알 수 있었다.

3-3. 스펙트럼 응답

HWE 방법으로 각성분에 따라 제작한 Cd_{1-x}Zn_{x}S 광전도 셀의 스펙트럼 응답은 상관에서 측정하여 Fig. 10과 같이 보였으며 스펙트럼 채무의 위치는 Table 2에 나타내었다. Fig. 10에서 Cd_{1-x}Zn_{x}S 박막의 Cds는 293K 일 때 514.7nm(2.4088eV)의 봉우리임을 다음과 같이 분석할 수 있다. 액시돈 결합에서 지자 전도성 라이온 온도 이상 0.029eV depos도에 존재하므로 광학적 밴드갭 E_g(T)와 비교하여 2.3986eV (2.4276-0.029/1)인 것이 자유 액시돈 A_1의 봉우리와 일치한다. 293K 이상의 봉우리 514.7nm(2.4088eV) 봉우리는 자유 액시돈 A_1 봉우리와 0.0102eV의 오차 범위에서 일치하지만 자유 액시돈 A_1에 의한 광전도 봉우리로 고찰된다. Cd_{0.5}Zn_{0.5}S, ZnS의 광전도 봉우리는 광학적 밴드갭 E_g(T)와 비교하여 보면 각자에 E_g(0) 에 있는 전자가 전도도 ρ으로 얻어지며 이는 각자에 의한 봉우리로 보이며 이는 각자전도의 전자가 적절한 전도와 생긴 전선전이에 의한 것으로 여겨진다.

3-4. 광전도 셀 특성

3-4-1. 감도 (η)

광전도 셀의 감도(sensitivity)는 광전도면에 입사하는 조명의 세기에 따라 셀의 출력사이의 관계이다. 감도는 빛을 포장해 주는 전류와 셀의 전압에 의해 표현될 수 있으며 셀의 전류에 표시하는 것이다. 광전도 셀은 광전도 셀의 전도를 10 lx에서 1,000 lx까지 변화시키며 셀의 전류 변화를 측정하였고, 조도와 저항의 관계에서 전류의 구체는 광 특성이라 부르며, \[\eta_{1000} = \tan \theta = \frac{\log R_{10} - \log R_{1000}}{\log 1000 - \log 10} \]
로 나타낸다. 단, R_{10}와 R_{1000}은 조도를 10 lx와 1000 lx로 조절할 때 셀의 각도의 저항 값이다. Cd_{0.5}Zn_{0.5}S 광전도 셀에 쌓이는 빛의 세기는 10 lx에서 1000 lx까지 변화하면서 측정한 Cds, Cd_{0.5}Zn_{0.5}S, ZnS 셀의 저항값들의 관계를 Fig. 11, 12, 13에 보였다. Fig. 11은 (a) 전극, (b) Cu, (c) S, (d) Cd, and (e) 공기에서 열처리한 Cds 시료의 조도에 따른 셀의 변화를 나타낸 성분이다.

3.4-2. 최대 허용 소비전력 (MAPD)

광전도 셀에 입력된 전란의 빛을 조이고 출력인 가전용을 변화시키며 활력은 전류(illumination current)와의 관계를 선행으로 유지된다. 공급 전압을 1V에서 점검 최대시 biases를 활력은 이루어진 허용전력은 Fig. 14에 보였다. 조도는 300, 500 및 800 lx로 고정하고 공급 전압을 1V에서 점검 최대시 biases는

<table>
<thead>
<tr>
<th>Cds</th>
<th>ZnS</th>
<th>Cd_{0.5}Zn_{0.5}S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cds_{0.5}Zn_{0.5}S</td>
<td>2.4276</td>
<td>514.7</td>
</tr>
<tr>
<td>ZnS</td>
<td>2.9796</td>
<td>416.2</td>
</tr>
</tbody>
</table>
\[\gamma(0) \rightarrow \gamma_1 \]

이때 \(\gamma \) 값은 각각 0.86, 0.83, 0.85, 0.99, 0.24, 0.91로 Cu 증기분위기에서 열처리한 셀의 감도가 가장 좋았으며 0.8 이상이면 실용화가 가능하다. Fig. 13은 (a) 전극, (b) Cu, (c) S, (d) 공기, (e) Zn에서 열처리한 ZnS 시료의 조도에 따른 셀의 변화를 나타낸 성분이다. 이때 \(\gamma \) 값은 각각 0.26, 0.96, 0.98, 0.90, 0.08가 Cu 증기 분위기에서 열처리한 셀의 감도가 가장 좋았으며 0.8 이상이면 실용화가 가능하다.11

Fig. 10. Photocurrent spectra of Cds_{0.5}Zn_{0.5}S thin film (1)ZnS (2) Cds_{0.5}Zn_{0.5}S (3) CdS

Table. 4 Photocurrent peak energy and fine structure Cd_{1-x}Zn_{x}S of thin film

<table>
<thead>
<tr>
<th>Cd_{1-x}Zn_{x}S</th>
<th>optical p.c. peak</th>
<th>differ</th>
<th>fine structure band gap</th>
<th>energy eV</th>
<th>photoconductive</th>
<th>position ence</th>
<th>(\gamma)</th>
<th>(\gamma_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cds_{0.5}Zn_{0.5}S</td>
<td>2.9796</td>
<td>416.2</td>
<td>2.9789</td>
<td>0.0007</td>
<td>(\gamma(0) \rightarrow \gamma_1)</td>
<td>0.26</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>ZnS</td>
<td>3.6513</td>
<td>379.7</td>
<td>3.6497</td>
<td>0.0016</td>
<td>(\gamma(0) \rightarrow \gamma_1)</td>
<td>0.96</td>
<td>0.91</td>
<td></td>
</tr>
</tbody>
</table>
100V, 500 lx일때는 75V, 800 lx일때는 54V이내에서
서 선행을 유지하여 최대 허용 소비전력은 318 mW
임을 알 수 있다. 이와 같은 방법으로 구한 Cd, S
증기 분위기 및 공기, 진공 분위기에서 열처리한
시료의 최대 허용 소비전력은 각각 190 mW, 116 mW,
249 mW, 249 mW로 Cu 증기 분위기에서 열처리한 시료
의 MAPD가 가장 크게 나타났다. Cu 증기 분위기
에서 열처리한 Cd0.5Zn0.5S 박막의 공급 전압과 및
조사에 의한 전류의 관계를 Fig. 15에 보였다. 조도
를 300, 500 및 800 lx로 고정하고 공급 전압을 1V
에서 점정 증가시킬 때 300 lx는 100V, 500 lx일때
는 75V, 800 lx일때는 54V이내에서 선행을 유지하
여 최대 허용 소비전력은 338 mW임을 알 수 있다.

Fig. 11. Cell resistance vs illumination
characteristics of CdS epilayer (a) vacuum, (b)
Cu, (c) S, (d) Cd, and (e) air

이와 같은 방법으로 구한 Cd, S, Zn 증기 분위
기 및 공기, 진공 분위기에서 열처리한 시료의 최
대 허용 소비전력은 각각 121 mW, 119 mW, 109 mW, 265
mW, 192 mW로 증기 분위기에서 열처리한 시료의
MAPD가 가장 크게 나타났다. Cu 증기 분위기에
서 열처리한 ZnS 박막의 공급 전압과 및 조사에
의한 전류의 관계를 Fig. 16에 보였다. 조도를 300,
500 및 800 lx로 고정하고 공급 전압을 1V에서 점
정 증가시킬 때 300 lx는 100V, 500 lx일때는 75V,
800 lx일때는 54V이내에서 선행을 유지하여 최대
허용 소비전력은 332 mW임을 알 수 있다. 이와 같
은 방법으로 구한 Cd, Zn 증기 분위기 및 진공,
공기 분위기에서 열처리한 시료의 최대 허용 소비
전력은 각각 109 mW, 197 mW, 193 mW, 250 mW로 Cu 증기
분위기에서 열처리한 시료의 MAPD가 가장 크게
나타났다. 소비전력이 크다는 것은 최저로 연결할
때 공급전압을 더 증가해도 빛을 받아 효율이 전류
가 선행으로 유지되는 구간이 커서 이용범위가 큰
것을 의미한다.

Fig. 14. Illumination current vs voltage characteristics of CdS epilayer annealed in Cu
vapour

3-4-3. pc/dc

CdS, Cd0.5Zn0.5S, ZnS 광전도 섬을 Cd, Zn, S, Cu 증기 분위기 및 공기, 진공 분위기에서 열처리한 시료에 각각 1.5V의 전압을 걸고 dark 상태에서 측정한 dark current (dc)와 tungsten filament 전구
에서 방출하는 백색광(3,000 lx)을 시료에 비추었을 때 나타난 photocurrent (pc)를 측정하여 Table 5, 6, 7에 보였다. CdS 광전도 섬의 경우 darkcurrent에 비해 photocurrent의 비가 가장 큰 것은 Cu 증
기 분위기에서 열처리한 경우로 pc/dc가 9.42×10^6
였으며, Cd0.5Zn0.5S 광전도 섬의 경우 darkcurrent에
비해 photocurrent의 비가 가장 큰 것은 Cu 증
기 분위기에서 열처리한 경우로 pc/dc가 1.65×10^7
였으며, ZnS 광전도 섬의 경우 darkcurrent에 비해
photocurrent의 비가 가장 큰 것은 Cu 증기 분위기
에서 열처리한 경우로 pc/dc가 1.38×10^8이었다. 10^6
이상이면 실용화가 가능하므로 좋은 광전도체로서

Table 6. Comparison of darkcurrent with photocurrent of Cd0.5Zn0.5S thin
film grown by HWE method annealed in Cd, Zn, S, Cu, air, and vacuum
(light intensity : 3,000lx)

<table>
<thead>
<tr>
<th>sample</th>
<th>darkcurrent (A)</th>
<th>photocurrent (A)</th>
<th>ratio (pc/dc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd0.5Zn0.5S : Cd</td>
<td>1.44×10^-5</td>
<td>2.58×10^-3</td>
<td>1.83×10^4</td>
</tr>
<tr>
<td>Cd0.5Zn0.5S : S</td>
<td>6.50×10^-5</td>
<td>2.15×10^-2</td>
<td>3.45×10^4</td>
</tr>
<tr>
<td>Cd0.5Zn0.5S : Zn</td>
<td>5.50×10^-5</td>
<td>1.19×10^-2</td>
<td>2.16×10^4</td>
</tr>
<tr>
<td>Cd0.5Zn0.5S : Cu</td>
<td>6.94×10^-4</td>
<td>1.35×10^-2</td>
<td>2.34×10^4</td>
</tr>
<tr>
<td>Cd0.5Zn0.5S : vacuum</td>
<td>1.22×10^-2</td>
<td>2.01×10^-2</td>
<td>1.65×10^4</td>
</tr>
<tr>
<td>Cd0.5Zn0.5S : air</td>
<td>5.69×10^-5</td>
<td>2.00×10^-2</td>
<td>4.42×10^4</td>
</tr>
<tr>
<td>7.87×10^-7</td>
<td>7.40×10^-5</td>
<td>9.36×10^5</td>
<td></td>
</tr>
</tbody>
</table>
3-4-4. 응답시간

응답시간은 광전도 섬에 빛이 조사된 후 전류의 peak 값이 63%가 될 때까지 요구되는 시간 (rise time)과 빛이 제거된 후 peak 값의 37%로 감소하는 데 걸리는 시간 (decay time)으로 구분한다. 이 decay time을 carrier의 수명이라 한다. HWE로 제작한 CdS, Cd_{0.5}Zn_{0.5}S, ZnS 광전도 섬에 10 lx의 빛을 조일 때 CdS 인 경우 Table 8에서 보는 바와 같이 응답시간이 가장 빠른 셜은 Cu 증기 분위기에서 열처리한 셜로서 rise time은 9ms, decay time은 9.5ms였으며 그 다음으로 공기 분위기, S 증기 분위기, Cd 증기 분위기, 진공 분위기 순서로 점차 늦었다. Cd_{0.5}Zn_{0.5}S 인 경우 Table 9에서 보는 바와 같이 응답시간이 가장 빠른 셜은 Cu 증기 분위기에서 열처리한 셜로서 rise time은 9.7ms, decay time은 9.3ms였으며 그 다음으로 공기 분위기, S, Zn, Cd 증기 분위기, 진공 분위기 순서로 점차 늦었다. ZnS 인 경우 Table 10에서 보는 바와 같이 응답시간이 가장 빠른 셜은 Cu 증기 분위기에서 열처리한 셜로서 rise time은 10.2ms, decay time은 9.8ms였으며 그 다음으로 공기 분위기, S, Zn 증기 분위기, 진공 분위기 순서로 점차 늦었다.

응답시간은 응답율 (rise time)과 내림시간 (decay time) 모두가 20ms 이내 정도면 실용화가 가능하며 이러한 응답시간은 빛의 세기와 부하량, 결정생성 조건, 주변 온도 등 여러 조건과 관계 한다.

Table 9. Response time of Cd_{0.5}Zn_{0.5}S thin film

<table>
<thead>
<tr>
<th>sample</th>
<th>rise time (ms)</th>
<th>decay time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd_{0.5}Zn_{0.5}S : Cd</td>
<td>20.3</td>
<td>26.4</td>
</tr>
<tr>
<td>Cd_{0.5}Zn_{0.5}S : Zn</td>
<td>15.4</td>
<td>11.6</td>
</tr>
<tr>
<td>Cd_{0.5}Zn_{0.5}S : S</td>
<td>13.5</td>
<td>11.1</td>
</tr>
<tr>
<td>Cd_{0.5}Zn_{0.5}S : Cu</td>
<td>9.7</td>
<td>9.3</td>
</tr>
<tr>
<td>Cd_{0.5}Zn_{0.5}S : air</td>
<td>12.1</td>
<td>10.5</td>
</tr>
<tr>
<td>Cd_{0.5}Zn_{0.5}S : vacuum</td>
<td>31</td>
<td>20</td>
</tr>
</tbody>
</table>

4. 결론

HWE 방법으로 Cd_{1-x}Zn_{x}S 박막을 성장하여 Cd, Zn, S, Cu 증기 분위기 및 공기, 진공 분위기에서 열처리하여 기본성질과 광전도 셜의 특성을 연구한 결과, 다음과 같은 결론을 얻었다.
1. Cd_{1-x}Zn_{x}S 박막은 기판의 온도 440℃, 중وال원의 온도 600℃에서 성장하였을 때 반복치가 265 arcsec로 가장 좋았다.
2. Spectral response를 살펴서 측정한 결과 CdS

는 자유 에너트ion A_{1}, Cd_{0.5}Zn_{0.5}S, ZnS 와공전 자가 전도자* 펄프(A)에 있는 전자의 전도체로 완여 기에 의해 둘째 전극에 이끌려 나타난 봉우리로 보이며 이는 가전차트의 전자가 직접 반응이 생명 전도전이에 의한 것으로 여겨진다.
3. Cd_{1-x}Zn_{x}S 박막의 응용소자 광전도 섬으로 사용할 수 있는 p/c, dc 감도(sensitivity), 최대 유효보전력 (MAPD) 값이 가장 큰 광전도 섬은 Cd_{0.5}Zn_{0.5}S의 Cu 증기분위기에서 열처리한 셜로 각각 1.65×10^7, 0.99, 338mW였으며. 또한 응답시간도 응답시간 10ms, 내림시간 9.5ms로 가장 빠르게 나타났다.
4. HWE 방법으로 Cd_{0.5}Zn_{0.5}S 박막을 성장하여 Cu 증기 분위기에서 열처리한 셜의 광전도 특성은 소결법으로 제작한 일본의 Hamamatsu 제품과 비교하여 더 나은 특성을 얻었다.

References