(구두-9) ## Inhibitory Effect of Ginsenoside Rg₃ and Ginsenoside Rh₂ on Activated Microglia Eun-Jin KIM, Jong Hoon RYU and Dong-Hyun KIM# College of Pharmacy, Kyung Hee University, 1, Hoegi, Dongdaemun-ku, Seoul 130-701, Korea Ginseng (the roots of *Panax ginseng* C.A. Meyer, Araliaceae) has been used as a traditional medicine in many countries. The major components of ginseng are ginsenosides. Red ginseng produced by steaming fresh ginseng at 98-100°C for 2 - 4 h has different ginsenosides (e.g. ginsenoside Rg₃) compared to fresh ginseng. Ginsenoside Rg₃ is metabolized to ginsenoside Rh₂ by human intestinal bacteria. The ginsenoside Rh₂ have been reported to exhibit antitumor, antiallergic and brain ischemia-protective activities. We therefore isolated ginsenoside Rg_3 from steamed ginseng, transformed it to ginsenoside Rh_2 by human intestinal bacteria, and isolated Rh_2 . Then we studied the antiinflammatory effect of ginsenoside Rh_2 on activated microglial BV2 cells. The Ginsenoside Rh_2 potently inhibited the production of NO and prostaglandin E2 in LPS/IFN- γ -induced BV2 cells. The ginsenoside Rh_2 also reduced the expression levels of the inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 proteins. The ginsenoside Rh_2 inhibited the NO level produced by iNOS enzyme activity in cell-free system, but did not inhibit COX-1 and 2 activities. The ginsenoside Rh_2 potently inhibited the levels of TNF- α and IL-1 β in LPS/IFN- γ -induced BV2 cells. These findings suggest that the protective effect of ginsenoside Rh_2 against ischemic brain injury may originate from the repressing proinflammatory cytokines and gene expression of iNOS and COX-2.