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요       약 

Current rendering processors are organized mainly to process a triangle as fast as possible and recently parallel 3D rendering processors, 
which can process multiple triangles in parallel with multiple rasterizers, begin to appear. For high performance in processing triangles, it 
is desirable for each rasterizer have its own local pixel cache. However, the consistency problem may occur in accessing the data at the 
same address simultaneously by more than one rasterizer. In this paper, we propose a parallel rendering processor architecture, called 
DAVID II, resolving such consistency problem effectively. Moreover, the proposed architecture reduces the latency due to a pixel cache 
miss significantly. The experimental results show that DAVID II achieves almost linear speedup at best case even in sixteen rasterizers. 
 

1. Introduction 
Currently, high-performance rendering processors with 

moderate prices are announced and adopted in almost all of 
PCs. Even in the game consoles, such as Sony’s 
PlayStation®2 [1] and MS X-Box, 3D graphics are 
accelerated with their own processors. Then, current 
rendering processors aim to process triangles (or a primitives) 
one at a time with their multiple pixel pipelines. However, the 
performance improvement by this approach is still 
insufficient to produce truly realistic scenes. Thus, the 
concurrent execution on multiple triangles at a time should be 
provided.  

As the semiconductor technology advances, it is possible 
to produce a parallel rendering processor by integrating the 
multiple rasterizers into a single chip. Sony’s GScube 
includes 16 graphics processing units (GPUs) integrated with 
256-Mb embedded DRAM [2]. Because the output of the 16 
GPUs is fed into a pixel merge IC which drives the data 
stream to a video display, each GPU must have its own frame 
buffer, which is similar to a sort-last parallel rendering 
machine as classified in [3]. Thus a large amount of 
embedded DRAM should be integrated. 

Parallel rendering with a single frame buffer, which can be 
classified into the sort middle machine, causes the 

consistency problem in case more than one rasterizer 
accesses the data at the same address. In [4], a superscalar 
rendering processor (SRP) with superscalar principles for 
increasing the available parallelism is presented. The 
consistency problem is detected automatically by the 
dependency testing. But, the additional hardware for the 
superscalar execution, such as the dependency testing 
hardware, should be provided. Special manipulations in case 
of large triangles and the triangle strips are also required to 
boost the parallelism. Because an ideal multi-ported frame 
buffer is assumed, only triangle-level parallelism for the 
benchmarks is shown in their results. 

In this paper, we propose a new parallel rendering 
processor architecture in which each rasterizer executes a 
conventional rasterization pipeline with its local pixel cache. 
We allow the consistency problem to arise in each pixel 
cache. But we maintain the consistency in the frame buffer by 
performing additional consistency-tests (C-tests) for all pixels 
within each pixel cache block, whenever it is written into the 
frame buffer. A C-test implies z-test and alpha-blending 
operations for a pixel. The proposed architecture also reduce 
significantly the latency due to a pixel cache miss by 
executing the rasterization pipeline immediately after 
transmitting the cache block on which a miss generated into 
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the memory interface unit (MIU). 
To validate the proposed architecture, various simulation 

results with three benchmarks are given. We also calculate 
the memory latency reduction rates according to the number 
of rasterizers. We can achieve up to 90% zero-latency 
memory system even in sixteen rasterizers.  

In the next section, we give a brief overview of a 
conventional rasterization pipeline flow. In Section 3, we 
propose our architecture. The three memory systems of the 
proposed architecture are discussed in Section 4. Various 
simulation results and performance evaluation are given in 
Section 5. Conclusions are presented in Section 6. 
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Fig. 1. A conventional pixel rasterization pipeline. 

 
2. A Conventional Rasterization Pipeline 

The rendering process consists of two stages: geometry 
processing and rasterization. A general rasterization pipeline 
consists of three steps: triangle setup, edge-walk, and pixel 
rasterization. A conventional pixel rasterization pipeline is 
shown in Fig. 1 [6]. The first two stages read four or eight 
texels from the texture cache, perform either bi-linear or tri-
linear filtering on them to produce a single texel, and blend 
the texel with the pixel color. The alpha-value of the current 
fragment is then compared with that of the filtered texel. The 
next two stages read the z-value from the depth cache within 
the pixel cache and compare it with that of the current 
fragment. Observe that the pixel cache consists of the depth 
cache and the color cache, as shown by a dotted box in Fig. 1. 
If the z-test is successful, a new z-value is written into the 
depth cache. Finally, we read the color data from the color 
cache of the pixel cache, alpha-blend them with the result of 
texture blending, and then write the final color data back to 
the color cache. 

 
3. The Proposed Architecture 

Fig. 2 shows the proposed parallel rendering processor 
architecture. The issue unit does not exist, the ALUs for C-
tests are inserted in between MIU and the frame buffer, and 
the pixel cache is locally placed on each rasterizer. 

Each rasterizer performs the rasterization with its local 
texture cache and local pixel cache. As opposed to SRP, the 
dependency testing does not exist. Thus, triangle-level 
parallelism of the proposed architecture is certainly 100%. 
But, the consistency problem occurs undoubtedly in the pixel 
cache. 

One of the main ideas of this paper is that we allow the 

consistency problem to arise in each pixel cache, but we 
maintain the consistency strictly in the frame buffer. The data 
in the pixel cache are transmitted into the frame buffer 
whenever a pixel cache miss occurs. It is also generated in 
flushing the pixel cache when the rasterization of the current 
frame is completed. In the proposed architecture, the 
consistency of the frame buffer is maintained by performing 
additional C-tests for each transmitted block from the pixel 
cache with the corresponding block on the frame buffer. 
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Fig. 2. The proposed architecture. 

 
Another main idea is that the proposed architecture, even 

though a pixel cache miss occurs, does not wait until the 
cache miss handling is completed. The proposed architecture 
rather continues to execute the rasterization immediately after 
transmitting the cache block on which a miss generated into 
MIU. Thus, the latency due to a cache miss, which includes 
the time to transfer the corresponding block from the frame 
buffer into the pixel cache, is significantly reduced. Moreover, 
the rasterization pipeline and C-tests can be executed 
independently.  

 
4. The Memory Systems of the Proposed Architecture 

A unified memory system is widely adopted by recent 
rendering processors. As mentioned in [5], the biggest 
advantage of a single graphics memory system is the 
dynamic reallocation of memory bandwidth. The external bus 
width of a current rendering processor is either 128 bits or 
256 bits. It is expected that a wider bus will be announced in 
the next generation rendering processors. The pixel cache and 
the texture cache are essentially included into a rendering 
processor to use a wide external bus effectively and to run the 
rasterization pipeline as high a rate as possible. 

A conventional MIU has several queues to buffer the data 
transmissions between the processor and the external memory. 
For example, each memory controller in [5] has five request 
queues. The replaced cache blocks transmitted from the pixel 
cache are fed into the pixel output queue in MIU and then 
each of them is written into the frame buffer after C-tests. It 
is desirable for an effective memory system that the input rate 
of MIU should match well with the output rate of MIU. 

Fig. 3 shows the three memory systems for the proposed 
architecture: conventional DRAMs for the frame buffer 
(CDFB), C-RAMs for the frame buffer (CRFB), and 
embedded DRAMs for the frame buffer (EDFB). The shaded 
blocks reside within a rendering processor chip. The non-
shaded blocks can be organized as separate chips. The three 
figures in Fig. 3 are arranged according to the output rate of 
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MIU; that is, conventional DRAMs in Fig. 3 (a) have the 
lowest output rate, C-RAMs in Fig. 3 (b) are the next, and 
embedded DRAMs in Fig. 3 (c) have the highest rate. 
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Fig. 3. The three memory systems. 

In CDFB, conventional DRAMs are used for the frame 
buffer and the ALUs for C-tests are included within the 
rendering processor. On the other hand in CRFB, C-RAMs 
are used for the frame buffer and the ALUs for C-tests are 
included within C-RAMs. Note that the relationship between 
the processor and the frame buffer in CDFB is read-modify-
write, while that in CRFB is write-only. Thus, in accessing 
the frame buffer for rasterization, CRFB requires only a half 
amount of the memory bandwidth of CDFB. However, CDFB 
has an overwhelming advantage over CRFB in terms of the 
cost-effectiveness, because C-RAMs are too expensive to 
develop. 

Because C-tests are performed per cache block, the 
processing style of C-RAMs is similar to that of current 
DRAMs. Thus, C-RAMs can be implemented by adding 
simple hardware logics into current DRAMs, while 3D-
RAMs include an internal cache and other complex schemes 
to improve the performance of the internal cache. 

In EDFB, because both the ALUs for C-tests and the frame 
buffer are included in the rendering processor, a very wide 
bus width, for example more than 1024 bits, between MIU 
and the frame buffer is available and the latency to access the 
frame buffer is also reduced. Note that Sony’s PlayStation®2 
and GScube are typical rendering processors with embedded 
DRAMs for the frame buffer. 

 
5. Experimental Simulation Results 

In order to validate the proposed architecture, various 
simulation results are given in this section. A trace-driven 
simulator has been built for the proposed architecture. The 
traces are generated with three benchmarks, Quake3 demo I, 
Quake3 demo II, and Lightscape for 1600×1200 screen 
resolution by modifying the Mesa OpenGL compatible API. 

For each benchmark, 100 frames are used to generate each 
trace. The model data of each benchmark are evenly 
distributed into the given number of rasterizers by round-
robin fashion. For example, if the number of the rasterizers is 
n, the first triangle, the (n+1)-th triangle, and so on are 

inputted into the first rasterizer. 
With these traces, the pixel cache simulations are 

performed by modifying the well-known DineroIII cache 
simulator [7]. The memory latency reduction rates shown in 
Section 5.1 are also calculated for each trace. 

Quake3 in particular is one of typical current video games 
and is frequently used as a benchmark in other related works 
for their simulations. Lightscape is a product of 
SPECviewperfTM  and is an industrial standard benchmark 
for measuring the performance of 3D rendering systems 
running under OpenGL.  

 

(a) Quake3 I 

 
(b) Quake3 II 

 

(c) Lightscape 

Fig. 4. The memory latency reduction rates. 

5.1 The memory latency reduction rates 
A replaced cache block from the pixel cache is stored into 

the tail entry of a pixel output queue indicated by the tail 
pointer. When the replaced block reaches the head entry 
indicated by the head pointer, it is written into the frame 
buffer. The overall pipeline does not stall as long as the pixel 
output queue is not full. Thus, with a buffer of infinite size, 
the proposed architecture is able to achieve a zero-latency 
memory system. 

Fig. 4 shows the memory latency reduction rates for the 
three memory systems. Note that the reduction rate of 100% 
represents a zero-latency memory system. If the reduction 
rate is 0%, the full memory latency is required for a pixel 
cache miss. We assume that the numbers of cycles to 
complete C-tests for a pixel cache block for CDFB, CRFB, 
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and EDFB are 16, 12, and 8, respectively. The number of 
cycles can be determined according to the block size of a 
pixel cache, the number of ALUs, the DRAM performance, 
etc. We also assume that the number of entries in a pixel 
output queue is fixed to 128, because the simulation results 
on the reduction rates for various numbers of entries, which 
is not provided in this paper, show that the numbers of entries 
from 4 up to 1024 affect the reduction rates under 8%. 

The simulation results show that an almost zero-latency 
memory system can be achieved with CRFB and EDFB with 
one rasterizer and two rasterizers. With four rasterizers, 
significant reduction rates are achieved for EDFB. Because 
the number of replaced blocks fed into MIU at the same time 
increases as the number of the rasterizers increases, the 
reduction rates decrease as the number of rasterizers 
increases. The reduction rates are not sufficient when the 
number of rasterizers is eight or sixteen. 

 
5.2 Performance evaluation 
To evaluate the performance analytically, we calculate the 

average fragments per cycle (AFPC) with a rasterizer. In [6], 
the miss penalties due to both the pixel cache and the texture 
cache are assumed to degrade the overall performance. In this 
paper, we assume that only the memory latency due to the 
pixel cache can degrade the performance. Hence, AFPC can 
be calculated as follows. 

)),1(1/(1 reductionLatencyRateMissAFPC −××+=  
where Miss_Rate is the miss rate of the pixel cache, Latency 
is the cycle times of the memory latency due to a pixel cache 
miss, and Reduction is the reduction rates shown in Fig. 4. 
The denominator of the above equation represents the 
average cycles per fragment with a rasterizer. 

Fig. 5 shows AFPCs for the proposed architecture with 
different numbers of rasterizers and five different 
configurations. EDFB with 0% reduction rate is denoted by 
EDFB0. The AFPC of EDFB0 is provided to compare it with 
those of other four proposed configurations. For example, for 
four rasterizers in Fig. 5 (a), the AFPC of EDFB0 is almost 
the same as that of CDFB. The performance increment for n 
rasterizers can be calculated easily by multiplying n with 
AFPC of the architecture with n rasterizers. 

 

 
(a) Quake3 I 

 
(b) Quake3 II 

 
(c) Lightscape 

Fig. 5. AFPCs of the proposed architecture. 

6. Conclusions 
This paper proposes a new parallel rendering processor 

architecture solving the consistency problem of the pixel 
cache and significantly reducing the memory latency due to 
the pixel cache miss. As a future work, we would like to 
develop the prototype of the proposed architecture. 
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