P-5 / H. Kotera

A Comfortable Imaging on Display

Hiroaki Kotera
Dept. Information and Image Sciences, Chiba University, Japan

Abstract

Most of past imagc processing systcms have been designed
indcpendent of timage contents. Now, cvolving computation power
is making thc “image-dependent’ clcgant algorithms possible to
get the better image renditions on display. This paper introduccs
our rccent approaches to quality and plcasant imaging based on
image-dependent. Thrcc typical approachcs to comfortable
“Sharpness”, “Lightness”, and “Color” rcnditions on display
imagc arc prescnted.

1. Introduction

Sccing 600th anniversary of Gutenberg’s birth in 2000 A.D., we
should look back thc historical significancc of lctterpress
technology and takc a step forward into digital imaging ncw age.
Now imaging tcchnology plays a lcading rolc in visual
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communication, but mecets scverc assessment to satisfy human
vision. Not only high precision and high definition digital media,
but also “intelligent image processing” will be necessary for more
acsthetic and pleasant imaging. Collaboration with vision rescarch
and devclopment in content-based algorithm are cexpected to
advancec the next gencration color imaging for multi-media.
This paper introduces our recent approaches to a pleasant imaging
bascd on the concept of image-dependent.
This paper introduccs the following three applications

[1] Adaptive Edge Sharpeming with smoothing

[2] Adaptive Scale-Gain Retinex Modcl

[3] Image-dependent Gamut Expansion:
Fig.1 shows a part of intclligent imagc processing system
devcloped in our laboratory.
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Fig.1 Image Processing System for displaying comfortable color images

2. Adaptive Image Sharpening

Image blurring mcchanism is modcled analogous to a diffusion
proccss in physical phcnomena and image sharpening proccess is
described as its inverse diffusion. So far, a great varicty of image
sharpcning algorithms for backward diffusion has been developed.
Lincar unsharp masking (USM) mcthod or Laplacian filter arc
most widcly uscd for image sharpening.

In practicc, thc USM or Laplacian opcrators arc given by sccond
order dcrivatives and rcalized by local spatial filters. Although
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these image sharpening filters arc simple and work well in many
applications, thcy have two main drawbacks: (1) Lincar opcrator
makes a systcm very sensitive to nois¢ resulting in unplcasant
granularity. (2) It enhances high-contrast arcas much morc with
unpicasant ovcrshoot artifacts. Various approaches have been done
for rcducc the nois¢ scnsitivity based on thc usc of nonlincar
opcrators as follows.

Adaptive USM (A-USM) model by Polcscll: designed to work

sensitive to detail arcas with medium contrast and insensitive to



the uniform arcas. A cost function s dcfined by a mcasurc of
local dynamics

e Cubic USM (C-USM) model by Ramponi: introduccd a
quadratic function to bc scnsitive to high-gradicnt but lcss
sensitive to slow gradient cdge arcas.

®  Rational USM (R-USM) model by Ramponi: cxtended
C-USM by adding the rational control tcrm to cnhance the
cdges higher in dctail zonc and lower in relatively uniform
zonc depending on the local vananccs.

o Wavelet USM (W-USM) modcl by Okazaki: improved
C-USM by Muiti-Scaic gradicnts of Wavclict.

Whilc a varicty of vision-bascd cdgc dctection opcrators have
been considered such as Gaussian Derivative (GD), Gabor, DOG,
DOOG, or DODOG. Young® and others rcported GD is the best to
minimize the joint spacc-spatial frcquency uncertainty AveAw We
havc also applicd vision-bascd Multi-Scale GD(MGD) opcrators.
The basic Gaussian distribution function and its sccond derivative
are defined by
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The cdge signals arc cxtracted from input image g(x, y) by the
two-dimensional convolution opcration by

5(x,y)= —VZG(x,y)* g(x,y)
| (2)

The cdge types arc classified by mcasuring thc cdge strength
through a prc-scanning GD filter (-V2GS) with appropriate
standard dcviation oy Fig.2 illustrates the sharpcning proccss in
our systtm. New modcl has both functions of sharpening and
smoothing. A pre-scanning filter classifics the cdge types into rard,
medium, soft, and scparatcs the flat arcas. Three different GD
filters arc sclectively applied to the classified edge types and a
normal Gaussian filter is uscd for flat arca noisc reduction.

First, the performance of our systcm was comparcd with that of
existing nonlincar USM meodels for monochromc image. Fig3
shows a result for Lena images. Lenal is a normally blurrcd
samplc with

small background noise but Lena? is hcavily degraded by blurring
and Gausstan noisc. Among them, our model worked best
cspecially in the noise reduction in the flat arcas by intentionally
applicd smoothing filtcr.

Fig.4 shows a sharpencd samplc applicd to color image. In
comparison with conventional mcthod, the proposcd modcl
sharpencd the cdge slopes naturally and reduced the background
noiscs dramatically

Rational USM Our Multi-GD

Fig.3 Comparison in sharpened monochrome image by adaptive multi-GD filters vs. existing nonlinear USMs
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Fig.4 Noise reduction effect in adaptive multi-GD filters for color image
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3. Adaptive Scale-Gain Retinex

The sccond topic is addressed to image-dependent Lightness
control. Human vision can perceive 104 order of luminance range
by adaptation mcchanism. But the picturc taken by clectronic
camcra under the heavy change in highlight and shadow often
looks diffcrent becausc of lack of ranges. Retinex model proposcd
by Land and McCann controls the scene lightness automatically.
Jobson ct al, NASA advanccd the single-scale rctinex (SSR) into
multi-scale rctinex (MSR) bascd on thc center/ surround (C/S)
modcl.

Letting the camcra image /(x, v) be a product of light source L(x,
v) and scene reflectivity R(x, v) given by I(x. v= L{x. v)eR(x, v),
scene reflectivity is simply recovered by taking the C/S ratio

é(x,y) = I(x,y)/f,(x,_\*) = I(x.y)/f(x,y)

= Center lumin ancel Surround lu min ance 3)
In the basic SSR, surround S is calculated by convolving the input
image with Gausstan filter.
Since the C/S ratio riscs up higher or gocs down lower according
to thc surround 1s darker or highter, the center pixel gain is
automatically adjusted and thc shadow arcas become visible. Fig.
4 shows the principlc of Retinex.
MSR presents improved output by the weighting sum of plural
SSRs. Howcver the decision rule of weights is not clear but
cmpirical. We  developed scenc-adaptive MSR model which
determines the weights automatically dependent of image content.
In our Adaptive MSR, the Retinex output Ri(x. v, Om) for 1=R. G,
B is calculated as follows
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Imagc-dependent scale-gain function 4(g;,) 1s given as follows.
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2'¢s5 (0., ) = standard deviation in SSR Histogram (6)
The modc] paramcters in the conventional Retinex represented by
NASA have been cmpirically optimized and complicated. In our
modcl, a scalc-gain function A(o;,) is automatically determincd
bascd on statistics and depending on image contents.

Fig.6 shows a comparison of MSR images. All thc Retinex images
arc dramatically improved in shadow visibilitics. The proposcd
scenc-adaptive MSR is best in color appecarance, whilc NASA s
best in resolution. In most cascs, we don’t know what 1image is
idcal, unless we scc the original scene through our cyc at the samce
place and at the samc time. Although our model worked in robust
for many natural images, an idcal test target is necessary for the
best optimization of paramcters. A mcthod for synthesizing the
test target image on screen is under development.
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Fig.6 Visibility Improvement in Displaved Image by Adaptive Scale-Gain MSR.Model
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4. Adaptive Gamut Mapping
The design concept of GMA (Gamut Mapping Algorithm) is
basically divided into the following two categorics.

(1) D-D{Decvice-to-Device) GMA

(2) 1-D (Image-to-Device) GMA
So far most of GMA application has been addressed to compress a
widc gamut CRT image into a narrow gamut print imagc. Whilc
thc gamut cxpansion from narrow to widc has not been interested
s0 much, the printer color gamut has been much cxpanded with the
improvements in ink and paper. Now the “Bi-dircctional” GMA
from wide to narrow and narrow to widc is desired for the pleasant
color imaging. In practice of 1-D GMA, thc image GBD (Gamut
Boundary Dcscniptor) is necessary. We have developed a simple
mcthod called r-image for getting image GBD as shown in Fig.7.
A sct of the maximum radial vectors is cxtracted from thc
sub-divided segments in CIELAB polar coordinates and mapped
onto 2D (6 g)planc as a B/W r-image, where cach pixcl
corrcsponds to the magnitude of cach radial vector.

7

Extraction of maximum radial
vector in segmented subspace

2D r (6, ¢p)-image

Fig.7 Gamut Boundary Description by r-image

Sincc the out of gamut colors arc dircctly discriminated by a
“pixcl to-pixcl™ comparison in the r-image between a given image
and thc output device (scc Fig. 8), the bi-dircctional GMA is
casily designed.

Out of gamut colors of “wool”

Printer gamut by r-image

Fig.8 Image vs. printer gamut comparison
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Fig.9 shows an improvcd image samplc by “Gamut Expansion™.
Color appecarancce of narrow gamut scenc capturcd undcer dim light
is dramatically improved just as scen under hght room by the
gamut cxpansion. (a) is a scenc under normal light and (b) 1s a test
image under dim light. It is highly dc-saturatcd and thc colors arc
distributed in very narrow gamut. The color distribution of picture
(b) under dim light was expanded as shown in (c) with thc bright
and vivid colors closc to normal (a).

(c) After gamut expansion
Fig. 9 Appearance improvement by Gamut Expansion

S. Conclusion

In this paper we introduced a content-based and image-dependent
approach to reproducc morc plcasant images on display or printer,
Idcal goal is to capturc and rcproducc a rcal world scene just as
human vision 1s sccing. Collaboration with vision rescarch is
nccessary for futurc work on tntelligent image processing.
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