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Abstract

A modeling of the nucleation and dynamical
behavior of defects from an inhomogeneous surface
configuration using fast Q-tensor method is realized.
On modeling the defect nucleation and dynamics, A fast
Q-tensor method is applied. From the numerical
modeling, we confirmed that surface inhomogeneity
which makes strong strain energy in the local liquid
crystal director field could cause defects. Experimental
result has compared with numerical modeling in order
to verify the simulation of the defect nucleation.

1. Introduction

An understanding of the dynamical behavior of
liquid crystal director including defects and transitions
between topologically inequivalent states has become
important for advanced liquid crystal modes, which can
exhibit excellent electro-optical characteristics, such as
in-plane switch cell, patterned vertically aligned cell,
multi-domain cell and so on. In order to understand
defect dynamics, generally, two and three dimensional
calculations that can include disclination for liquid
crystal cells are important.

In previous papers !'*!

we introduced fast Q-tensor
method which can handle defect dynamics in addition
to normal liquid crystal behavior and topological
transition. Dickman had shown that Oseen-Frank vector
representation could go directly to the Q-tensor
representation if we use only one 3" order Q
component "*!. However, Dickman considered only a

constant value of order parameter S, so that the results

are only qualitative in their description of defects.

We have successfully shown that the fast Q-tensor
method calculate the order parameter by adding the
temperature terms in addition to the Q-tensor
representation of Oseen-Frank free energy terms 'L
Besides, we have derived an improved normalization
method for the faster calculations.

Defects in the LC director field sometimes are
occurred due to surface inhomogeneity in addition to
topologically inequivalent transition, because it can
derive high elastic energy around at “high changed
position”. Fig 1 1s a cartoon that shows the defect
nucleation and defect lines at prominence of the surface
in the homeotropic aligned liquid crystal director field
I4J_

In this paper, we model the defect from surface
prominence shown in Fig 1 using fast Q-tensor

representation. In order to confirm the calculated result,

Fig 1. Example of the decoration of mechanical
inhomogeneities at a prominence by a nematic

liquid crystal.
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we compared the numerical modeling of the defect
nucleation with experimental phenomenon. In addition,
dynamical behaviors of the defect from surface

inhomogeneity have calculated under applied voltages.

2, Numerical Modeling of a Fast Q tensor
method
The Gibb’s free energy density (f) consists of
elastic energy density term of LC director (f) and
external electric free energy density term (f). Simply,
we can achieve the total energy by integrating the
calculated Gibb’s free energy density. As | mentioned
above, Dickman successfully derived the Q-tensor form
from the vector form of the Frank-Oseen strain free

energy density as below °/,
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The electric free energy density for the Q-tensor
form is derived directly from £, = D-E/2. From this, the
Q-tensor form for the electric free energy density can

be obtained as below P!,
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In order to calculate order parameter S in each grid,
we need to add a temperature energy term that, in the
absence of director field distortion, determine S as a
function of temperature because the order parameter S
1s related directly to temperature. Basically, we can
formulate the thermal energy density by using a simple

polynomial expansion which is expressed as follows '°!,
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Therefore, the total free energy density is the sum
of equations (1),(2) and (3) , so that the Gibb’s free
energy density can be described as the sum of these
three energy densities.

In order to achieve the equilibrium state of the
director configuration at constant electric field, it is
typical to use the Euler-Lagrange equation. The
following equations show the Euler-Lagrange
representation for the electric potential and the director
components under the Cartesian coordinate system. By
distribution and LC

solving eq. (4), potential

configurations can be obtained, respectively.
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The terms [f,]gi and [f]y represent the functional
derivatives with respect to the Q; and voltage V,
respectively. By using these equations, we can calculate
the components of the 3 by 3 Q matrix and voltages in
each grid. Functional derivatives by each energy term

are described as follows 1),
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Where, T is current temperature, 7° represents the
n; ’

nematic-isotropic transition temperature, and the

constants from A4; to A, represent the coefficients for

the polynomial equation. Generally, polynomial

()



coefficients may be dependent on nematic material. The
polynomial coefficients 4, to A, have been adjusted so
the T,; as to be around 95 °C, so that we can see order
parameter S and all diagonalzed Q components go to 0
at T,; from typical value of room temperature (25 °C).
As a result, we calculated that tha polynomial
coefficients A,, 4,, A; and A4, are 0.79 J/Cm3, 0.784
J/Cm3, 0.61 J/Cm3 and 1.474 }/Cm3, respectively.

The dynamic equation W0Qu/d1) = -[fJox can
provide the equilibrium state by recalculating the Q-
tensor and voltages in every time step in each grid. y is
rotational viscosity and we ignored bulk viscosity
because have not considered flow effect. To obtain an
equilibrium state, we applied relaxation method based
on dynamic equation for numerical calculation. As a
result, the formulated relation between Q tensor of next
time and that of current time

is as follows,

Qj _”leﬂ(”T _*''é"t'l'[f:,g]Qﬂk (6)
i
The order parameter S is related to Q-tensor in the
equation by $ = 1.5(Q'Q) and we can get this
simultaneously with the Q components.
3. Numerical modeling for the defect
nucleation and dynamical behaviors

De Gennes mentioned that the size of the defect

6]

-

core might be approached to molecular dimensions
so that we may encounter a serious problem for
observing the defect core in the LC configuration. In
the previous papers ''?! we proposed a numerical
method to find defect core out by reducing the
temperature coefficients 4; to 4 , Otherwise, we need
to scale down the cell structure for calculation. These
two approaches obviously allow us to observe defect

generation and dynamics.
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Fig 2. An experiment for observing defect

nucleation; (a) cell structure, (b) light

leakage under crossed polarizers

Figure 2(a) shows the geometry of the vertical aligned
cell to realize the cell structure as shown in Fig. 1.

Used liquid crystal material was MLC-6608 of
Merck company (K;; = 16.7 pN, Ky, = 7.3 pN, K33 =
18.1 pN, €,=3.6, € . =7.8). Cell gap to keep LC layer
was 5 um, and ZnO layer was used for step surface
configuration in a z-direction. Height of the ZnO layer
was lum. Figure 2(b) shows microscopic photograph of
the cell with crossed polarizers. From the figure, we
have observed the light leakage from the edge of the
electrode which implies nucleation of the defect core
due to surface inhomogeneity with step type of the edge.

Figure 3 shows the cell geometry for simulating the
defect nucleation from surface inhomogeneity. For the
calculation, the number of calculated layers was set to
50 x 50 in the x and z directions. LC directors on the
surface have aligned vertically and we assumed that the
LC directors at corner grids of the edge have average
numerical values of the neighbor directors as shown in
Fig. 3 (b).

Figure 4 shows calculated result using fast Q-
tensor method. In the figure, length of the lines is
proportional to amplitude of S, so that circled areas in
the figure imply the points of defect nucleation.

Without applied voltage as shown in Fig (a), defect was
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Fig 3. The geometry of a vertical alignment LC cell for calculation; (a) cell structure, (b) LC

alignment on the inhomogeneous surface.
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Fig 4. Two-dimensional director configuration for a vertical alignment cell which includes
inhomogeneous surface. The orientations of the cylinders give the local director orientation, which

has very small scalar order parameter S.

nucleated along z-axis at step side. This implies that
high strain energy may be stored along z-axis at step
side because the LC directors along surface in the z-
axis meet LC directors in bulk area with perpendicular
state in a very short range. Figure 4 (b), (c) and (d)
show the dynamical behavior of the generated defects
from surface inhomogeneity. It moves to the bulk area
along defect line by applying the electric field.
However, moving distance of the defects may be very
short (under several um), so that we assume that the
generated defects due to step surface inhomogeneity
look stuck around the edge of the electrode even if we
apply electric field.

4. Conclusions

Numerical modeling of the liquid crystal defect
from surface inhomogeneity has been presented by
using fast Q-tensor method. We confirmed the defect
has been nucleated around edge of the electrode and it

moved along the defect line into LC bulk area. For
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better optical characteristics of the LC cell, various
structure of the LC cell may be applied to LC optical
design and this may cause the unpredictable optical loss
because of generated defects. A Fast Q-tensor method
which provides information of order parameter S may
help us to understand defect dynamics and to design LC
cell better.
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