ITO/Alq₃/Al 소자의 주파수 의존 응답을 이용한 유기발광소자의 등가회로 분석

안준호, 정동회, 허성우', 이준웅, 송민종", 이원재"', 김태완' 광운대학교, 홍익대학교', 광주보건대학", 경원전문대학"

Equivalent-Circuit Analysis of Organic Light-Emitting Diodes using Frequency-dependent Response of ITO/Alg₃/Al Device

Joon-ho Ahn, Dong-Hoe Chung, Sung-Woo Hur, Joon-Ung Lee, Min-Jong Song, Won-Jae Lee, and Tae Wan Kim

Kwangwoon University, Hongik University, Kwangju Health College", Kyungwon College"

Abstract

We have investigated equivalent-circuit analysis of organic light-emitting diodes using frequency-dependent response of ITO/Alq3(60nm)/Al device at two different bias voltages. Complex impedance Z of the device was measured in the frequency range of $40 \text{Hz} \sim 1 \text{MHz}$. A Cole-Cole plot shows that there are two dielectric relaxations at the bias below turn-on voltage, and one relaxation at the bias above turn-on voltage. We are able to interpret the frequency-dependent response in terms of equivalent-circuit model of contact resistance R_s in series with parallel combination of resistance R_p and capacitance C_p . We have obtained contact resistance R_s around 90Ω , mainly from the ITO anode.

keyword: impedance, frequency-dependant response

1. Introduction

There was a breakthrough in the area of organic light-emitting diodes due to a report of Tang and VanSlyke's work in Eastman Kodak[1]. A light emission from the device occurs due to a recombination of injected electrons and holes in the molecules. Hence, an injection mechanism, transport mechanism, and recombination process are important in organic light-emitting diodes. A dc current-voltage characteristic of the device gives a resistive response to the applied voltage. However, an ac current-voltage characteristic

gives a resistive and capacitive response to the applied voltage. Roy et al., analyzed the organic layer in terms of resistive and capacitive component[2]. And Pospisil et al., reported that the impedance of organic layer depends on the frequency and the applied voltage[3].

In this paper, we report dielectric response of the organic light-emitting diodes through a study of frequency- and voltage-dependent impedance of the ITO/Alq₃/Al device. From this study, we can establish an equivalent-circuit model of the device involving resistors and capacitors.

2. Experimental

Organic light-emitting diodes were fabricated with the Alq3 emissive layer sandwiched between ITO anode and Al cathode. A thermal evaporation was employed to evaporate the powder of Alo3 at a base pressure of 5×10⁻⁶ torr with a deposition rate of about 0.7 Å/s. A thickness of organic layer was made to be 60nm. And then the aluminum was thermally evaporated to a thickness of 150nm at a base pressure of 5×10⁻⁶ torr. A deposition rate of aluminum was 0.5 Å/s up to 10nm thick, and 10 $10nm \sim 150nm$ in thickness range. light-emitting area was made to be 15mm²(3mm×5mm). A surface resistance of ITO substrate is $15\Omega/\Box$ and a thickness is 170nm.

To characterize the organic light-emitting diodes, complex impedance of the device was measured as a function of frequency at ambient environment. Precision impedance analyzer of Agilent 4294A was used to measure the frequency-dependent response in the range of 40Hz and 1MHz.

3. Results and Discussion

A complex impedance ${m Z}$ can be expressed such as

$$Z = Z' + jZ'' = |Z|e^{j\theta}$$
 (1)

Figure 1 shows (a) a magnitude of impedance |Z| and (b) phase θ of the device as a function of frequency from 40Hz to 1MHz at a bias voltage of 2V and 12V.

As is seen in Fig. 1(a), the magnitude of impedance |Z| at 2V bias decreases from 40Hz to As is seen in Fig. 1(a), the magnitude of impedance |Z| at 2V bias decreases from 40Hz to 100Hz in the beginning, and stays almost constant from 100Hz to 3kHz, and then gradually decreases as the frequency increases further. The corresponding phase θ at 2V bias is about zero below 1kHz, and

Fig. 1. (a) Magnitude of impedance |Z| and (b) phase θ as a function of frequency at a bias voltage of 2V and 12V in ITO/Alq₃(60nm)/Al organic light-emitting diodes.

decreases to about -75 near 30kHz, and then gradually approaches zero in the high frequency region(see Fig. 1(b)). A behavior of |Z| and θ measured under 12V bias is similar to that of 2V bias, except the magnitude of impedance |Z| is lower by a factor of one third to the previous one.

Fig. 2. Absolute value of real and imaginary part of impedance as a function of frequency at a bias voltage of 2V and 12V in ITO/Alq₃(60nm)/Al organic light-emitting diodes.

as the frequency increases.

A Cole-Cole plot was made as shown in Fig. 3. Bigger half circle in Fig. 3 is the one measured at 2V, and the smaller one at 12V. It is thought that there are two relaxations in the complex impedance measured at 2V; the first one is a big half circle which is supposed to be due to a molecular orientational polarization, and the second one is a low-frequency response(below 100Hz) possibly due to an interfacial polarization. However, the Cole-Cole plot at 12V shows only one relaxation due to a molecular orientational polarization.

We can employ an equivalent-circuit model of the device such as shown in Fig. 4 for the analysis of Cole-Cole plot. Then, the complex impedance Z in this model is

Fig. 3. Cole–Cole plot of the complex impedance Z of a single layer ITO/Alq $_3$ (60nm)/Al organic light-emitting diodes at different bias voltages.

$$Z = Z' + jZ'' = R_s + \frac{R_p}{1 + j\omega\tau}$$
 (2)

, where τ is given by $R_{\rho}C_{\rho}$. Then, the real and imaginary part of impedance are the following.

$$Z' - R_s = \frac{R_p}{1 + (\omega \tau)^2}$$

$$Z'' = -\frac{\omega \tau R_p}{1 + (\frac{1}{\omega \tau})^2}$$
(3)

The solid lines in Fig. 2 are fitted ones using Eq. (3). It implies that this equivalent-circuit model is appropriate in this device structure. We can show that the Z' and Z'' satisfy the following relation.

$$[Z' - (R_s + \frac{R_p}{2})]^2 + [Z'']^2 = (\frac{R_p}{2})^2$$
 (4)

In Z'-Z'' plane, this is an equation of circle, having a center at $(R_s + R_p/2, 0)$ with radius of $R_p/2$. The solid lines in Fig. 3 are fitted ones using Eq. (4). From this analysis, it gives a contact resistance of R_s around 90Ω . And the

제 6 회 일렉트랜트 및 응용기술 연구회

Fig. 4. Equivalent-circuit model of organic light-emitting diodes in terms of contact resistance R_s in series with parallel combination of resistance R_p and capacitance C_p

radius gives a resistance R_p around 3,100 Ω and 1,170 Ω for 2V and 12V, respectively.

Using Eq. (2), we can express frequency-dependent R_p and C_p in terms of Z' and Z''.

$$R_{p} = (Z' - R_{s}) + \frac{(Z'')^{2}}{(Z' - R_{s})}$$

$$C_{p} = -(\frac{1}{\omega R_{p}}) \cdot (\frac{Z''}{(Z' - R_{s})})$$
 (5)

Figure 5 shows a calculated resistance R_p and capacitance C_p of the device as a function of frequency at two bias voltages by applying the equivalent-circuit model of Fig. 4. A capacitance C_p is almost constant to be about 10nF in the measured frequency range irrespective of the bias voltages.

4. Conclusion

We have studied frequency-dependent response of organic light-emitting diodes using ITO/Alq $_3$ (60nm)/Al device at two different bias voltages; one above and one below turn-on voltage. We are able to interpret the organic light-emitting diodes in terms of the equivalent-circuit model of contact resistance R_s in series with parallel combination of resistance R_p and capacitance C_p .

Fig. 5. Frequency-dependent R_p and C_p at the bias voltage of 2V and 3V in ITO/Alq₃(60nm)/Al organic light-emitting diode.

Acknowledgment

This work was support by Grant from Korea Ministry of Commerce, Industry and Energy (2004).

Reference

- [1] C. W. Tang, S.A. VanSlyke, "Organic Electroluminescent Diodes", Appl. Phys. Lett. Vol 51. p. 913, 1987.
- [2] Sudipto Roy, S. Kundu, S.K. Roy, Amlan J. Pal, "Impedance characteristics of layer-by-layer electrostatic self-assembled films of evans blue", Mater. Chem. Phys. Vol. 77, p. 784, 2002.
- [3] J. Pospisil, J. Honskus, J. Fahnrich, P. Hlidek, P. Toman, "Optical and electrical properties of poly(p-phenylene vinylene) light emitting diodes", J. Lumin., Vol. 72, p. 522, 1997.