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Abstract

In a situation that rank order information on attribute
weights is captured, two solution approaches are
presented. An exact solution approach via interacticn
with a decision-maker pursues progressive reduction of
a set of non-dominated alternatives by narrowing down
the feasible attribute weights set. In approximate
solution approach, on the other hand, three categories
of approximate methods such as surrogate weights
method, the dominance value-based decision rules, and
three classical decision rules are presented and their
efficacies in terms of choice accuracy are evaluated via
simulation analysis. The simulation results indicate thzt
a method, which combines an exact sclution approzcit
through interactions with the decision-maker and the
dominance value-based approach is recommendable in
a case that a decision is not made at a single step under
imprecisely assessed weights information.

1. Research background

In a multiattribute decision making (MADM)
problem, one usually considers a finite discrete set of
alternatives, A={x,y,z,***}, which is valued by a finite
discrete set of attributes, /={1,2,"**,n}. Let v{x) be the
value of alternative x4 on attribute /€7 and w; 2
scaling factor to represent the relative importance of the
ith attribute. A classical evaluation of alternative leads
to the aggregation of all criteria into a unique criterion
called a value function under certainty and a utility
function under uncertainty. In this paper, we assume
that there exists additive value functions under
preferential independence [4, 10] and thus the
underlying model is a multiattribute value (MAV)
model of the form:

Vx)y=Yiomivix) ey
where V is an overall multiattribute value, 0< V< 1;
alternative x is a vector of attribute levels (x;, xa,°*", x,.);
v{x) is a single attribute value function, 0< v(x)< I;
w0 are weights reflecting the relative importance of
the range of the attribute values, and Y ;e ;w=1.

During the past several decades, there have been
research efforts to deal with imprecise information in
an multicriteria decision making (MCDM) field. Under

uncertainty case, if the set of feasible probability
distributions is non-empty and contains more than one
element, the dominance relations have to be checked.
Initiated by Fishburn [2], authors, presuming different
types of imprecise probabilities ranging from ordinal to
the most general linear constraints, suggest verifying
dominance with the use of linear programs [7]. Sage
and White [8] admit possibly imprecise descriptior. of
both attribute weights and utilities in the forms of lir ear
set inclusion, and present a novel solution mettod.
Kirkwood and Sarin [6] present a method for ranking
multiattribute alternatives using a weighted addi:ive
evaluation function with partial weighting constunts
and further present an algorithm that partially
rank-orders the complete set concerning alternatives
based on the pairwise ranking information. The induced
dominance relations under partial information about
attribute weights are not sufficient to resolve a decision
problem. Kirkwood and Corner [5] show in tieir
simulation study that imprecise information about the
ordinal preference information of weights is often not
sufficient to determine the most preferred alternative
for realistic decision problems.

2. Approximate solution approach

2. 1 Decision aid with surrogate weights method

In a case where a rank order about attribute wei shts
is assessed from the decision maker as in SMARTS
[1C], several methods for determining approxiriate
attribute weights have been presented. Stillwell ¢ al.
[9] present three surrogate weighting methods for
determining the attribute weights that preserve the rank
order of weights: rank sum weights, rank reciprical
weights, and rank exponent weights. Assuming that the
significance of attribute weights is arranged i1 a
descending order from the most important attribute to
the least important attribute such as w >w,> >w,, “hey
present approximate weights having the follov/ing
forms:
(a) Rank sum (RS) weights

W=t 1-DY ey o =20+ 1-D/R(nt 1), i=1,-- .0
(b) Rank reciprocal (RR) weights

WD Y1 1l =1, 1,

A third method by Stillwell et al. [9], described as ank
exponent weights, is not used in our comparative s:udy
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since it requires one judged number from the
respondent in order to specify a parameter used in the
formula. Another surrogate weights that are computed
by taking the mean of the extreme points of weights are
rank order centroid (ROC) [1]:
(c) Rank Orcler Centroid (ROC) weights
w=(1/n) Y yei o pllf, =1,
Barron and Barrett [1] suggest that ROC weights
among other approximate weights are more adequate to
accurately renk alternatives. In their simulation study,
the superiority of ROC weights is evaluated and
verified in terms of the degree of identification of the
best alternative and value losses with respect to the
various combinations of the number of alternatives, the
number of ettributes, and four different distributions
from which attribute values are generated.

2.2 Decision aid with aggregated dominance values
It is said that a pairwise weak dominance relation
holds between alternative x and y if and only if it holds
that &uin(x, ¥)> Emin(y, x) or equally &nal(x, ¥)> Ena(y; X)-
We now direct our attention to the pairwise dominance
value, &,.(x, y) obtained from solving (1) as helpful
decision-relevvant information for the use in establishing
preference re ations among the alternatives.
Step 1) Solve the problem (1) to obtain pairwise strict
or weak dominance values.
Step 2) Using the paired dominance values in Step 1,
compute aggregated dominating preference intensities
for each of al'ernatives.
¢+{x)= ZyDA-(x)fmin(L J’), VxEA.
Step 3) Using the paired dominance values in Step 1,
compute aggregated dominated preference intensities
for each of aliernatives.
(0-‘;75): ZyDA-(x)émin(ya x)’ VxEA.
Step 4) Compute the net preference intensity for each
of alternatives by means of the difference between the
dominating ar.d the dominated values.
oM ()= 0 (x)- g'(x), VxEA.
Step 5) Establish the preference relations among the
alternatives ac cording to the following rules:
xPy if "> 0" )
xly if o"(x)= ")
yPxif 9" (x)< ")
where xPy means that alternative x is preferred to
alternative y if the net preference strength of x is greater
than that of y and xly represents indifferent preference
between x and y. For a brief reference, we denote a
decision method by the magnitude of aggregated
dominating velues as the OUT I (i.e., Step 1-2) and a

decision method by the magnitude of the net dominance
values as the OUT II (i.e., Step 1-5).

2.3 Other decision rules
e maximax (OPTimistic): max,e 4[&na(x)]
e maximin (PESSimistic): minye 4[&pnin(x)]
¢ minimax regret (REG):
min,[max,. .maxy{ V(y)-V(x)]]
In addition to the three classical decision rules, we
consider a choice of an alternative which is the greatest
in the midpoint of the value intervals, that is
o central values (CENT): max, e 4[&pin(x)+HEna(X)].

2.4 Comparative analysis via simulation

In the simulation study, we demonstrate the
performance of approximate weights methods (i.e.,
ROC, RR, RS, and ES) in terms of selection of the best
alternative and overall rank ordering of alternatives,
compared with aggregated dominance values (OUT I,
OUT 11, and CENT) and three classical decision rules
(i.e., OPT, PESS, and REG) as a function of decision
problem size. The quality of decisions is assessed by
comparing decisions resulting from the use of each of
approximate methods with those arising from
knowledge of “true” weights, which are generated from
random numbers which satisfy the rank order of
attribute weights. The simulation study can be outlined
by the following five steps:
Step 1) Create the simulated decision problems. Each
sequentially generated random number from
independent uniform distribution ranging in (0, 1)
constitutes the mOn matrix of attribute values.
Step 2) Perform the simple dominance checks.
Step 3) Compute the attribute weights. The five
different sets of attributes weights need to be generated;
one is the randomly generated weights constrained so
as to satisfy the rank order (hereafter we call them
TRUE weights and the decision made by TRUE
weights is called TRUE method), and ROC, RR, RS,
and EW weights are generated according to the
formulae. To generate the TRUE weights for the »
attributes, we first select »-1 independent random
numbers from a uniform distribution on (0, 1), then
rank these numbers. Suppose the ranked numbers are
1>r, > 2r>2r>0. The differences of these
consecutively ranked numbers can be obtained as the
weights of the n-attributes, that is w,=1-r,,,
Wp=Fn1Tna," s Wi=r. Then, the set of weights will
sum to 1 and be uniformly distributed on the possible
domain of weights [3].



<Table 1> Simulation Results in Terms of Average Hit Ratio

Rank-based Dominance Classical
weights value-based rules decision rules
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3 3 0.891 0.881 0.873 0.721 0.884 0.883 0.841 0.737 0.812 0.832
5 0.898 0.887 0.864 0.705 0.878 0.844 0.833 0.723 0.848 0.836
7 0.889 0.866 0.857 0.686 0.848 0.830 0.815 0.692 0.836 0.826
10 0.898 0.860 0.835 0.654 0.824 0.792 0.776 0.665 0.823 0.787
15 0.875 0.835 0.829 0.648 0.762 0.720 0.719 0.620 0.759 0.723

5 3 0.846 0.830 0.816 0.654 0.816 0.833 0.782 0.590 0.680 0.759
5 0.864 0.845 0.826 0.618 0.835 0.811 0.780 0.573 0.775 0.784
7 0.855 0.830 0.805 0.593 0.809 0.786 0.753 0.558 0.773 0.756
10 0.859 0.808 0.787 0.578 0.783 0.725 0.699 0518 0.757 0.708
15 0.876 0.799 0.773 0.565 0.730 0.680 0.652 0.486 0.719 0.658

7 3 0.815 0.793 0.792 0.622 0.785 0.815 0.695 0.576 0.605 0.701
5 0.836 0.819 0.800 0.577 0.802 0.793 0.753 0.505 0.719 0.769
7 0.825 0.799 0.773 0.551 0.782 0.767 0.717 0.483 0.730 0.714
10 0.842 0.790 0.762 0.541 0.768 0.712 0.668 0.433 0.721 0.674
15 0.831 0.781 0.757 0.525 0.713 0.652 0.620 0.411 0,704 0.618

10 3 0.760 0.735 0.734 0.578 0.729 0.737 0.719 0.477 0.718 0.711
5 0.827 0.803 0.783 0.537 0778 0.781 0.742 0.430 0.713 0.744
7 0.806 0.779 0.748 0.507 0.727 0.723 0.678 0.402 0.696 0.692
10 0.829 0.783 0.745 0.504 0715 0.691 0.642 0.354 0.693 0.664
15 0.849 0.774 0.740 0.489 0.702 0.645 0.611 0.350 0.681 0.608

Step 4) Determine the final ranking of a set of
alternatives, applying the weights derived in Step 3, for
each of generated decision problems.

Step 5) Compare the decision results by each of
proposed methods with those by TRUE method in
terms of efficacy measures.

Two measures for the performance evaluation
include hit ratio and rank order correlation (Kendall’s ).
The hit ratio evaluates how frequently the coincidence
of best alternative occurs between methods under
consideration and TRUE method throughout simulation
runs. Thus, the best alternative resulted from each of
proposed methods is compared with the best alternative
chosen from TRUE method. As another indicator
representing the accuracy of considered methods, we
use Kendall’s = for calculating rank order correlations
between the methods under consideration and TRUE
method, and Kendall’s 7 is defined as follows:

- 2(Number of Pairwise Preference Violations)

- Total Number of Pairs of Preferences

The value +1 in Kendall’s 7, which ranges from -1 to +1,
means perfect correspondence between the two rank
orders. In addition to two efficacy measures, Kirkwood
and Sarin [6] algorithm (shortly K-S algorithm)
provides a criterion about whether the final ranking of 2
set of alternatives derived by each of methods preserves
the (partial) ranking of a set of alternatives derived by
the K-S algorithm, which can be stated as follows: if
(1) holds and w>w,>*->w,, then x is guaranteed to be

preferred to y if and only if Yy ... [Vm(X)-v(»)]20,

i=1,2,-+,n. It is trivial to show that the final rankings by
approximate weights methods except EW mettod
preserve the (partial) ranking by the K-S algorithm. I is,
however, meaningful to see the final ranking by “he
OUT (OUT I and OUT II) method preserves -he
ranking by the K-S algorithm since the final ranking by
the OUT method is derived by using various extrene
points of weights and then performing numerizal
manipulations.

We design the simulation with four different levels of
alternatives (m = 3, 5, 7, 10) and with five differ:nt
levels of attributes (n = 3, 5, 7, 10, 15). For each of 20
design elements (alternatives x attributes), the proc:ss
of generating and analyzing decision problems wsas
repeated until 10 replications of 10,000 trials had been
obtained. The simulation results for each of 20 design
elements are arranged with respect to two efficecy
measures in <Table 1>. Throughout the different
combinations of alternatives and attributes numbers,
ROC method shows the highest degree of coincidences
of best aiternative with TRUE method in terms of hit
ratio criterion whereas the OUT 1 method is
consistently superior to the OUT II, CENT and three
classical decision rules. With relatively less number of
alternatives and attributes (m =3, 5and n=3, 5, 7), *he
OUT I maintains correspondence of more than 80%
with TRUE method and shows peculiar declines in hit
ratio as the number of both alternatives and attribu‘es
increases (m =10 and n =10, 15) whereas ROC and RR
show stable rates of prediction. Therefore, it can be said
that ROC>RR>RS>EW on rank-based weigits
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methods, QUT I>OUT II>CENT on dominance
value-based rules, and no regular trends on classical
decision rulss. As was expected, EW method is the
worst method to adopt in resolving a decision problem
with rank-ordered attribute weights.

With regard to Kendall’s 1, ROC method shows
predominantly higher correlations with the ranking by
TRUE method than other methods, irrespective of the
various alterations of simulation parameters. From the
smallest to the largest number of alternatives and
attributes, ROC method, which ranges from 88% to
86%, shows only 2% decreases in rank order
correlations with TRUE method whereas RR and RS
method show rapid decreases of 7% - 8%. On the other
hand, the OUT I method, which is in between 84% and
70%, consistently shows better performance than QUT
I1, CENT ani three classical decision rules. The results
in terms df rank order correlations are analogous to the
results in terms of hit ratio criterion due to the high
correlation between two efficacy measures. To
summarize, the overall simulation results based on
these two eflicacy measures reveal ROC>RR>RS>EW
on rank-based weights methods, OUT I>OUT
II>CENT on dominance value-based rules, and no
regular trends on classical decision rules.

3. Discussion

If we do not force the decision maker to specify
parameters a; input data to the extent that this becomes
overly stressful or behaviorally and physically
irrelevant i1 view of the inherent imprecision
associated with domain knowledge of parameters
characterizing the decision situation, the
decision-maker provides his/her knowledge or
preference information on the weights {w;};,q; of which
the precise values are not known possibly on some of
attributes in such way that information is to satisfy
combinationss of linear constraints: (a) w2w; or
w~w>e, where ¢ is a small positive number, (b) w>
ayw;, (€) I<wi<u;, (d) wrw> wi-w, for iZj#kL.

In a case that a mixture of imprecise preferences is
provided, it :s not easy to obtain approximate weights
by the use of formulae and hence their usage is
somewhat limited. In the OUT method, however, we
only have to solve small linear programs for checking
paired dominance relations between alternatives, which
are, in turn, utilized for determining the strength of
preference of each of alternatives. In the simulation
study, the OUT method (especially OUT I method),
which is characterized by both exact solutions from
paired domirance checks and their aggregation, shows
outstanding performance in all cases studied except the
rank-based attribute weights. It is believed that this has

occurred due to the fact that the weights in the QUT
method are disseminated into the alternatives the way
in which they can take under imprecisely specified
weights and that the dominance results (i.e., strict or
weak) are then combined for identifying a preferred
alternative based on a reasonable way of aggregation.
In other words, the OUT method utilizes as pertinent
weights as possible depending on the value scores
which alternatives in paired comparison take rather
than using point estimates which only satisfy the
ordinal relation of weights.
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