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Abstract

The product rate variation problem, to be called the PRVP, is to sequence different type
units that minimizes the maximum value of a deviation function between ideal and actual
rates. The PRVP is an important scheduling problem that arises on mixed-model assembly
lines. A surge of research has examined very interesting methods for the PRVP. We believe,
however, that several issues are still open with respect to this problem. In this study, we
consider convex bipartite graphs, perfect matchings, permanents and balanced sequences.
The ultimate objective of this study is to show that we can provide a more efficient and
in-depth procedure with a graph theoretic approach in order to solve the PRVP. To achieve
this goal, we propose formal alternative proofs for some of the results stated in the previous
studies, and establish several new results.
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1 Introduction

The product rate variation problem, to be called the PRVP, is to sequence different product
units that minimizes the maximum value of a deviation function between ideal and actual
rates. The PRVP is an important scheduling problem that arises on mixed-model assembly
lines. And it is possible for us to exhibit the link between balanced sequences (more precisely,
word combinatorics) and this scheduling problem.

The PRVP is given by a number n of different products and a required demand d; for each
product i (i = 1,2,...,n). Then, we may denote a total required demand by D = Y_._, d;
and an ideal rate for each product ¢ by r; = %. The term ”ideal” refers to the fact that
we would like to allocate each product ¢ in a sequence in proportion r;. Such a sequence
would be balanced, uniformly leveled and fair. In addition, we let z;4 (t = 1,2,...,D) be
an actual demand of each product 7 up to time (or position) ¢ of a given sequence. Thus,
zix=7(j=1,2,...,d;) if the number of appearances of the product ¢ up to time ¢ is exactly
j. And tr; means an ideal demand for the product 7 up to time ¢.

In approaching the PRVP, two basic considerations usually arise. The one involves
determining a standard that constitute an ideal fair allocation. In other words, to define a
deviation function between the ideal and actual demands is a key issue. There are many
possible definitions for a deviation function. A good standard is the one which is accepted
by the researchers involved. The other is to construct other objectives and constraints which
enable us to obtain an optimal sequence. As a matter of course, we can not ensure that the
PRVP is a unimodal problem so that an optimal sequence is unique under any situation.

The roots of the general approach we employ lie in the study that has been analyzed in
[5]. The authors gave a very interesting analysis of the PRVP. We believe, however, that
several issues are still open with respect to this problem.

The ultimate objective of this study is to show that we can provide a more efficient and
in-depth procedure with a graph theoretic approach, not an integer programming one, in
order to solve the PRVP. To achieve this goal, we propose formal alternative proofs for some
of the results stated in [5], and establish several new results and problems in terms of graph
theory.

In section 2, we state one of the problems related to the PRVP. Then we consider several
theories with respect to convex bipartite graphs and a matching problem in order to prove
structural results. Section 3 contains more precise descriptions of the PRVP and related
issues. Section 4 provides proofs of structural results and several examples. Finally, in
section 5, we state a summary, relations to preceding results and further studies.
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2  Preliminaries

2.1 A problem related to the PRVP

Let A be a finite alphabet and A% the set of sequences defined on A. For u := ujuguz -+ €
AZ, a word w of u is a finite subsequence of consecutive letters in u: for example, w =
UpUpt1..Unsk—1. The integer k is the length of w and will be denoted by jw|. For a € A,
let jw|, denote the number of a’s in the word w.

Definition 1. ([3]) The sequence u € AZ is balanced if for any two words w and w’ in
u of the same length and any a € A4, ~1 < |w|, — |w'|a < 1.

Diefinition 2. If an n-tuple (py,p2,...,pn) Of rates such that ) ;p; = 1 makes a bal-
aaced sequence, the n-tuple is said to be balanceable.

Theorem 1 ([3, Theorem 2.18]).  For any sequence composed of two types, the set of
rutes (p,1 — p) is balanceable.

Theorem 2 ([3, Theorem 2.19]).  For any sequence composed of three types, the set of
rates (p1,p2,p3) is balanceable if and only if (py,p2,p3) = (4/7,2/7,1/7) or two rates are
equal.

Theorem 3 ([3, Theorem 2.20]). For any sequence composed of four types, the rate
tuple (p1,p2,p3,p4) with four distinct rates is balanceable if and only if (p1,p2,p3,p4) =
(8/15,4/15,2/15,1/15).

Proposition 1 ({3, Proposition 2.21]). For any sequence composed of four types, if
the rate tuple (p1, p2, P3,Pa) 15 made of less than two distinct numbers, then it is balanceable.

Lemma 1 ([3, Lemma 2.26]).  Let w be balanced with rates py > ... > pn, then w is
periodic. In particular, p; € Q for all i.

2.2 Convex bipartite graphs

We introduce some definitions and results for bipartite graphs. For the terminology and
nctation not defined in our discussion, we refer to [17, 14]. A bipartite graph G = (V;,, V,, E)
is an undirected graph with a vertex set V. UV, and an edge set E C (V; x V), where V;
and V, are disjoint.

Definition 4. A convez bipartite graph is a bipartite graph G = (V,,V,, E) with an
ordering V, := (ve1, V2, - - - , Uen) Such that, for any v, € Vi, if (v, v) € F and (vr,ve5) € E
then (ve,ver) € E foralli <k < j.
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A convex bipartite graph was originally discussed by Glover ([4]). It is a bipartite graph
G = (V,,V,, E) given by specifying an ordering ”<” and by specifying the endpoints and
the interval of the elements of V. connected to v, for every v, € V;.

An example of a convex bipartite graph is given on Figure 1. Here, a vertex (¢, j) adjacent
to a vertex t indicates z;; = j in the PRVP described in the pervious section. Observe that
this instance admits a perfect matching indicated as thick solid lines. Thus there exists an
optimal sequence, say (1,2,3,1,2).

Figure 1: Convex bipartite graph with (d;,ds,d3) = (2,2,1)

2.3 Perfect matchings
2.3.1 General results

A matching M in a graph G = (V, E) is a subset of E such that no two edges in M are
incident to the same vertex. Mazimum matching in a graph G = (V, E) is a matching of G
of which the size (number of edges) is maximum.

A subset V; C V is called a vertez cover of G if and only if every edge of G is incident
to at least one vertex in V,. The minimum size of vertex covers of G is called the verter
covering number of G. An edge cover of G is a set of edges such that every vertex in V
is incident to an edge in the set. The minimum size of edge covers of G is called the edge
covering number of G.

A set of vertices is independent if there is no edge between any two of them. The size of
any maximum independent set is called the independent number of G.

Now, we shall show some general results with respect to matchings. To begin with, we
shall use some notations as follows:

o The matching number of G is denoted by v(G);
o The vertex covering number of G is denoted by 7(G);

e The edge covering number of G is denoted by p(G);



e The independent number of G is denoted by a(G);

o The set of neighbors of V; C V in a graph G = (V, E) is denoted by N(V5).
Theorem 4 (Gallai(1959)). For any graph G = (V,E), let n:=| V |, then

(i) o(G) + 7(G)=n
(1) v(G) + p(G)=n (1)

if G has no isolated vertez.
Hereinafter, we restrict our attention to bipartite graphs only.

LCefinition 5. In a bipartite graph G = (V,,, V, E), a complete matching from V,. to V,
is a matching M such that every vertex in V, is incident to an edge in M, and a perfect
m.atching is a matching that is complete from V;. to V, as well as from V; to V;.

If both V, and V, have the same number of vertices, a complete matching from one to
the other is a perfect matching. In other words, a perfect matching in a bipartite graph
G = (Vs, V¢, F) defines an injective mapping f : V. — V. such that for every v, € V,,
there is an edge e := (v, f(v,)) € E.

Theorem 5 (Ko6nig(1931)). If G = (V, E) is a bipartite graph, then
7(G) = v(G). )

This theorem is also referred to as the Konig-Egervary theorem as Egerviry came up
with the same result in (8].

When does a bipartite graph have a complete matching? Given a graph, if we wish
tc prove that the graph has a complete matching, we can simply give the edges in the
matching. On the other hand, how do we prove that a graph has no complete matching?
We state Hall’s theorem which gives a necessary and sufficient condition for the existence of
a complete matching in a bipartite graph.

Given a bipartite graph G = (V;,,V,, E) and a subset of vertices U C V,., the neighbor-
hood N(U) is the subset of vertices of V, that are adjacent to some vertex in U, i.e.

NU)={vc € V. | (w,vc) € E for somew € U} = | J N(u). 3)
uelU
Theorem 6 (Hall(1935)). Let G = (V;,V,, E) be a bipartite graph with |V,| < [V].
Then G = (V;, V., E) has a complete matching from V. to V. if and only if [N(U)| > |U|
forall U CV,. ‘ : :



Theorem 7 (Frobenius(1917)). Let G = (V;,V,, E) be a bipartite graph. Then G =
(Vi Ve, E) has a perfect matching' from V,, to V, if and only if |V,| = |Ve| and [N(U)| > |U|
forall UCYV,.

Frobenius theorem is often called the marriage theorem. It is interesting to note that all
three theorems are equivalent.

Theorem 8 (Equivalence of Konig, Frobenius and Hall’s theorems).  There exists
a circular implication such that Kénig = Hall, Hall = Frobenius and Frobenius = Kinig.

2.3.2 Permanents

Definition 8.  Let G = (V, E) be a bipartite graph with bipartition (V;.,V;). The |V;|
by |V.| matrix X, defined by Xij =1 if (4,j) =e€ E and )2,-,- = 0 otherwise, is called X
the bipartite adjacency matriz of a graph G.

Definition 9.  The adjacency matriz of a graph G = (V, E) is the |V| x |V| matrix A
whose elements A;; are given such that A;; = 1 if v; and v; are adjacent, and A;; = 0
otherwise.

Is there any method so that we may verify the existence of a perfect matching by means
of a bipartite adjacency matrix or an adjacency matrix? The answer is "yes”. In this
subsection, we shall introduce the permanent which enables us to check the number of
perfect matchings.

The computation of a permanent has been studied extensively in algebraic complexity
theory, which is known as a §P-complete problem ([11]).

Definition 10. Let C = {¢;;) be a square matrix of order n over a ring R. The perma-
nent of C is defined by
n
per(C) = Z I ciow (4)
o € Spi=l

where S, denotes the symmetric group of degree n.

Let C(; j) be the matrix obtained from a square matrix C = (c;;) by deleting the i — th
row and the 7 — th column. Then it is also easy to see that for any ¢ and j,

per(C) = 3 (cik per(Cipy)) = Y (ckj Per(Cer,j))) - (5)
k=1 =

k=1

T A perfect matching is also referred as marriage or assignment.



Theorem 9 ([6, Minc(1978)]). Let G = (V,E) be a bipartite graph with bipartition
(Ve, Vo) such that |V,.| = |V,|. And let A and X be the adjacency matriz and the bipartite
adjacency matriz of the graph G = (V, E), respectively. Namely,

Ve Ve
v.[O X
A = "| = .
VIx|V] ‘/c (xt ) >
Then the number of perfect matchings of the graph G = (V, E) is given by
M| = Vper(A) = per(X). (6)

For example, consider the bipartite adjacency matrix and the adjacency matrix of the
graph in Figure 1, where V. = {(1,1),(2,1),(1,2),(3,1),(2,2)}, V. = {1,2,3,4,5} and

V=V.UV.
Note that,
~ 5 -~
per(X) = Z HXi o(d)
0 € Sp i=1
= Xuz-Xu-Xog- Xaa- Xss + Xz - X11 - Koo - Xsg - X5
+Xg X1z X - Xaq - Xss 4+ Xaz - Xug - X1 - Xsq - X35 = 4,
. 12
per(A) = [per(X)] =16.

Besides, we see that per(X) and per(A) enumerate the four perfect matchings. In this
instance, there exist four optimal sequences

1,2,3,1,2), (1,2,3,2,1), (2,1,3,1,2), (2,1,3,2,1),

respectively. Thus we have reformulated the bipartite matching problem as an algebraic
ccmplexity problem via Minc’s theorems. Minc ([6]) has showed that the permanent of a bi-
pertite adjacency matrix emumerates all the perfect matchings of a graph G = (V;,, V, E). In
other words, if per(X) # 0, then by considering the permutation expansion of the permanent
we obtain

prX)= Y ] X ™
meMe:=(i,j)€Em
where M is the set of all the perfect matchings in the graph G = (V,, V., E). Therefore,
thz permanent provides an useful information of the existence and the numbers of a perfect
matching. In short, the relation between the perfect matching and the permanent in a graph
G = (V;, V., E) such that |V;| = |V,| is given on Figure 2.



Figure 2: Relation between the perfect matching and the permanent in a graph G =
(Vr, Ve, E) such that |V,| = [V

2.4 Colorings of graphs

A graph is said to be k-colorable if it is possible to assign one color from a set of k colors to
each vertex such that no two adjacent vertices have the same color.

Definition 11. If a graph is k-colorable but not (k— 1)-colorable, we say that the graph
is k-chromatic and that its chromatic number is k.

So the chromatic number is the minimum number k& such that a graph is k-colorable.
Hence a graph is k-colorable if and only if its chromatic number is less than or equal tc
k. In other words, a k-chromatic graph is a graph that needs at least k colors, whereas a
k-colorable graph is a graph that does not need more than k colors. Obviously, a trivial
graph is the chromatic number of 1 and a bipartite graph is the chromatic number of 2.

A simple graph is said to be k edge colorable if it is possible to assign one color from a
set of k colors to each edge such that no two edges with a vertex in common get the same
color.

Definition 12. If a graph is k edge colorable but not (k ~ 1) edge colorable, we say
that the graph is k edge chromatic and that its chromatic indez is k.

So the chromatic index is the minimum number & such that a graph is k edge colorable.
Obviously, the maximum degree of any graph is necessarily a lower bound for its chromatic
index, whereas by Brooks’s theorem, the maximum degree is an upper bound of the chro-
matic number of any graph that is neither a complete graph nor an odd cycle ([17, page
255)).

Definition 13. A k-chromatic graph G = (V, E) is uniquely colorable if any k-coloring
of G induces the same partition of the vertex set of G.

Some notations are given as follows:
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The chromatic number of a graph G = (V, E) is denoted by x(G);
e The chromatic index of a graph G = (V, E) is denoted by x1(G);
o The maximum degree of a graph G = (V, E) is denoted by A(G).
¢ The minimum degree of a graph G = (V, E) is denoted by 8(G).

Theorem 10 (Kénig’s line coloring theorem(1916)).  For every bipartite graph G =
(Vry ‘/0); XI(G) = A(G)

Proposition 2 ([17, page 260]). The only uniquely colorable 2-chromatic graphs are
the bipartite graphs.

Proposition 3 ([17, pages 257, 260]).  If the k-chromatic graph G = (V, E) is uniquely
colorable, 6(G) > (k —1).

3 The minimization problem of a product rate variation

‘n this section, we shall review the definition and the goal of the PRVP, limitations of
‘nteger Programming Approach and benefits of Graph Theoretic Approach. And then, we
shall describe our problem.

We shall use the following notations:

o [a] will denote the largest integer smaller or equal to a for any real number a;
e [a] will denote the smallest integer larger or equal to a for any real number q;

e N is the set of all nonnegative integers;

3.1 Literature review

In the formulation of the PRVP, a key issue is how the deviation function between ideal
end actual demands is defined. The Minkowski’s L, metric defines distance between two
points. Usually, the L, metric is especially operationally important when p = 1,2,00. L
(Manhattan distance) and L (Euclidean distance) are the longest and the shortest distances
in the geometrical sence. Lo, (Tchebycheff distance) is the shortest distance in the numerical
sence. In this study, fortunately, because of commensurability between ideal and actual
clemands, it is possible to directly use any distance of the above three metrics. This implies
that it is not necessary for us to normalize the ideal demand (¢7;) and the actual demand
(z;1). On the other hand, Balinski et al. ([12]) have concluded that an arbitrary choice of a
cistance function is misdirected, and have recommended a normalization.



In this paper, we adopt Lo, (Tchebycheff distance) as the definition of deviation between
ideal and actual demands. Then, for each t (t = 1,2,..., D), a deviation between the ideal
and the actual demands is given by

Lo(t) = || %t =71t lo = m?xl Tyt — tr; | 8
where x; := (Z1t, Tat, - - -, Tne)t and 1y 1= (ry,tra, ..., try)t. Thus, a maximum deviation is
also defined by

mtaxLoo(t) = max | %t =1 oot = mta.x(m?xl Ty —tr; |} = n}at.x| Tit — tr; |- 9)

We can formulate the PRVP as an optimization problem as follows ([5, 12}).

[P1] Minimize.
max | oy — tri | (10)
Subject to.
n
S za=t, t=12,...,D. (11)
i=1
zip=d; i=12...,n (12)
xi(t-{-l)zmih i=1,2,...,n,t=1,2,...,D—1. (13)
Zi €N, 1=1,2,...,n,t=1,2,...,D. (14)

In this formulation, Equation (11) means that ¢ objects have to be allocated during the
first ¢ positions, and Equation (12) describes the required frequency constraints. Inequality
(13) indicates an actual frequency should not decrease with time. The aforementioned
formulation shows that given n rational numbers 1,79, ..., With a common denominator
D, the PRVP is to find nD integers x;; which construct an optimal sequence under the
restrictions (11)-(14).

On the other hand, it is worth while for us to consider the following PRVP [P2] equivalent
o [P1]. In fact, [P2] may be more efficient than [P1] in manipulating the problem.

[P2] Minimize.
8= m%x| T — tr | (15)
Subject to.
| zie —tr; | < B, 1=1,2,...,n,t=1,2...,D. (16)
n
Y za=t, t=12,...,D. (17
i=1
T;p = d;, i=12,...,n. (18)
zi(t+1).>_zit) i=1,2,...,n, t=1,2,...,D—1. (19)
zy €N, 1=12,...,n, t=12,...,D. (20)
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The difference between [P1] and [P2] is two-fold. The one is to convert the objective
function (11) into (16) and the other is to add the constraint (16) to [P2]. In general, there
exist three approaches to solve the PRVP. They are
(1) Bottieneck Assignment Problem ([7, 2]),

(2) Sequence of Assignment Problem and

{3) Sequence of Matching Problem ([5]).

The third approach involves an application of a bipartite maximum cardinality matching
algorithm.

Both [P1] and [P2] are integer programming problems such as a bottleneck assignment
problem and a sequence of assignment problem. Hereinafter, we shall focus our attention
on [P2]. Now, we define a set S of all optimal sequences in [P2] as follows:

S:={s|s=1(51,52,...,8D),| Tst —trs,| < B*,Tst > ZTe-1,t=1,2,...,D.}, (21)
where 3* := min 8. The goal of [P2] may be described as follows:

e Input n and d; for each ¢ and find z;; values such that | z;; —tr; | < B*, for all ¢
and t.

e And then, determine S with the values of z;;.

If we approach [P2] with a numeric analysis such as a Branch and Bound Method
to the Integer Programming, only one optimal sequence may be computed. That is, this
approach always finds only one sequence in §. This is the reason why we apply the graph
theoretic methodology to PRVP [P2]. Elegant theoretic findings such as the expansion of
the permanent of a bipartite adjacency matrix ([6]) and the perfect matching algorithm
([9, 10]) leads us to the true cardinality of S. It will become clear below that the problem
o finding all optimal solutions (or sequences) for the PRVP [P2] can be reduced to the
problem of catching all perfect matchings in a certain convex bipartite graph.

We now briefly summarize some of main results concerning the PRVP.

o Steiner et al. ({5]) have introduced a maximum deviation problem with Lo,. They have
showed that a sequence always exists such that the deviation of an actual demand from
the ideal demand of all products is never greater than one. The authors have developed
an optimization procedure for the PRVP considering it as a matching problem in a
bipartite graph and have demonstrated that 3* belongs to the interval [1 — rpay, 1),
where Tmax 1= max; 7;.

¢ Balinski et al. ([12]) have also noted the connection between the PRVP and appor-
tionment problems. From this connection, and from known results concerning appor-
tionment problems, it is not too difficult to deduce that simple-minded procedure such
as [5] do not provide an optimal solution for the PRVP in terms of a total deviation,
denoted by 3, , |zit — try.
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e Altman et al. ([3]) have exhibited the link between balanced sequences and the routing
problem in queueing networks. This study is essentially based on the word combina-
torics and uses its specific vocabulary, which relies heavily on results in {15, 13, 16, 11

e Minc ([6]) has showed very elegant results which describe the existence and the num-
bers of a perfect matching in a bipartite graph. He has stated that the expansion of the
permanent of a bipartite adjacency matrix enables us to get all the perfect matchings.

o Fukuda et al. ([9, 10]) have proposed an algorithm which finds all the perfect matchings
in an unweighted or a weighted bipartite graph. Their algorithm is as follows:

— First, they check whether or not at least one perfect matching exists by solving
the maximum cardinality matching problem.

— If a perfect matching exists, then they check again if there exists a different
perfect matching. If a different perfect matching exists, they show that all the
perfect matchings can be obtained by generating a sequence of these subproblems
iteratively.

To have a proper understanding of those things mentioned in the previous paragraphs,
let us illustrate an example.

Example 1. Consider the instance n = 3,d; = 3,dy = 3,ds = 1. Table 1 gives an
optimal solution for z;;’s and 8 which are numerically analyzed by the method of the integer
programming.

Table 1: IP approach : x;;’s optimal values under d = (3,3,1) and §* = —3

iz\t{1 2 3 4 5 6 7
1 0 1T 2 2 272 2 3
2 11T 1 2 22 s
3 00 0 0 T 1 1
Table 1 shows that an optimal sequence is s = (s1, 82,...,57) = (2,1,1,2,3,2,1), since

Tr > Ta0, Ti2 > 13, T13 > T12, Ta4 > T23, T35 > T3g, Toe > T2s, T17 > T1e. As
mentioned previously, the integer programming approach provides only one optimal sequence
in any case, which is the limitation of a numeric analysis. More preciously, all nonlinear
optimization techniques assume the unimodal problem and the compactness.

In case of infinite sequences, the required frequency (di,dz,d3) = (3,3,1) is balanceable
(I3, 16]). In this paper, however, we consider only finite sequences. Thus, the number of
optimal sequences, denoted by |S|, may be greater than one in a certain situation. Actually,
there exist 24 optimal sequences (|S| = 24) in Example 1 by means of the expansion of the
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determinant of a bipartite matching matrix or the expansion of the permanent of a bipartite
adjacency matrix. These facts imply that we need to change our direction from the integer
programming approach to the graph theoretic one.

3.2 Statement of problems

‘The ultimate objective of this study is to show that we could provide a more efficient and
‘nore in-depth procedure with a graph theoretic approach, not an integer programming one,
‘n order to solve the PRVP.

To begin with, we shall use some notations as follows:

o G(4,8%) := (V,W, €] d, 5*) will denote a bipartite graph corresponding to the PRVP
[P2] which is given by a pair (d, D) where d = (dy,dy,...,d,) and D =3, d;;

e V and W are disjoint vertex sets with the same cardinality such that V := {v;; | i =
1,2,...,n, 7=1,2,...,d;. Yand W:={w; |t =1,2,...,D. };

e £ is an edge set such that £ := {e;j: 1= (vij,we) | Tie =7 } S (V x W);
e M will denote the set of all the perfect matchings in the graph G(d, 8*).

Steiner et al. ([5]) have proposed the following inequality for the PRVP [P2].

. —
0 i 1 <8 < poy, (22)
Ti Ti
In view of this paper, it is equivalent to
. 1
1<Jr.ﬂgt<J—;+—ﬂ+1<D. (23)

Thus, their result means that an integer ¢ lies in the interval [ [ -FE'I, [-7—"#2 + IJ]. Also,
they have stated that the value 3 belongs to the interval [l — rpax, 1)T. Unfortunately, they
have passed through an obscure and informal process of derivation.

The objectives pursued in this study are as follows:
(1) We propose two formal alternative proofs for the results stated in [5]: the lower bound
of 3* and the degree of vertex v;;.
(2) Also, we provide two new results not stated in {5, 12]: the degree of vertex w; and the
refined lower bound of 8*.
(3) Based on (1) and (2) above, we introduce a procedure for the construction of the graph
¢(d, 6%). : |
(4) We prove that the graph G(d, ﬂ*) is always convex with respect to the vertex set W.
%) We confirm that an optimal sequence corresponds to a perfect matching in the graph

tsee their Lemma 1,2,3 and Theorem 1,2.



G(d,8*). That is, |S| = |M] and there exists a bijection from S to M. This implies that
an optimal sequence in a integer programming approach is equivalent to a perfect matching
in a graph theoretic approach.

4 Structural results for the PRVP

4.1 Bounds on the value 3
Let us start with defining some notations:
o deg(v;;) and deg(w;) are degrees of v;; and w;, respectively;
e We shall denote a subset P; of the vertex set V as P; := {vi1,vi2, ..., Vid, }-

Preceding studies such as [5, 12] and therein references have showed that 3 lies in the
interval {1 — rpax, 1) where rpay = gﬂbﬂ and dpax = max; d;.
The proposition 4 is a formal alternative proof for the lower bound on 8 stated in [5].

Proposition 4 For any PRVP [P2] with (d, D),
B> 1~ Tmax (24)
Proof. Using a (min or max) operation, we obtain
|mtinmia.x:v,-¢ - mtinmzaxtr,:| < max | Max Tig — m?xtr,-] < max max |z —tri].  (25)
Since max; r; := Tmax is constant and min; ¢t =1,
Imtin 10aX Tip — mtin max try} = Imtln MAX Lit — Tmax|- (26)

And it is clear that

mtin max Ty = maxmtin Ty = 1. (27)
1 1

Hence, from (25),(26) and (27), we conclude 8 := max, max; |z;; — tr;| > 1 — Tmax. This
completes the proof.

In the following theorem, we propose a formal alternative proof for the interval in which
t lies for each ¢ and j.

Theorem 11 {The values of t).  Given the PRVP [P2] with (d, D), for each i and j
. . —
t=[—-1 ﬂ],[J—-—.ﬁ‘lH,...,l————J .+'3+1J. (28)

Ti Ti Ti
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Proof. Consider a fixed product ¢ and a fixed number j of a product 7 which have been
allocated up to time (or position) ¢. That is ©;; = j such that z;; > ZTig-1) = F — 1. We
‘nust show that

[zie —trs| = |j —trid S Band gy —(E - Vri| =i~ 1=t -Drl <8  (29)

From the inequality (29), we obtain

. , - 1
178 < 3¥B fnal Biicegizt*+B (30)
T; T T T;
Since r; <1 and 8 > 1—'2—“, the inequality (30) reduces to
. 1
1B diz1¥B (31)
T4 T;

Ia the inequality (31), if t < J-r_-g, then j—~tr; > (3, a contradiction to |z ~tr;| < 8. Similarly,
ire> -’-‘-j—‘t@ + 1, then (¢t — 1)r; — ( — 1) > B, a contradiction to |Zie—1) — (¢ — )] < B.
Therefore, we get

S R PO PR ) -
This completes the proof.
&
Corollary 1 (Lower bound on 8).  For any PRVP [P2] with (d, D), |
B 2 max[l — ryax, %(1 — Tmin)] (33)
with equality if and only if 1 - rmax > 3(1 — ro)-
Proof. Theorem 11 shows that § > 135 for all i. Namely, § > Izfmia  Hence, by
Proposition 4, we get the results as required.
||

Corollary 2 (Degree of a vertex v;; := (i,j)).  In a bipartite graph G(a, 3*) correspond-
ing to the PRVP [P2] with (d, D), for each i and j we have

deg(vi) = [Lllr-_ifiuj - [l—_fi—] +1, (34)

1 T‘l

where 8* := min 8.



Proof. It is clear that deg(vy;) = | {t\zi = j, Tig-1y =J — 1, B=B*} ] Hence, by
Equation (32), we get

= [8) [E2E]) b, | 22242 ) -

Ti T3 Ti
This implies deg(v;) = [ .&T‘HL + lJ - "J—;ﬁ--\ + 1 as required.
| |

The following two Corollaries 3, 4 are immediate from Corollary 1. We shall provide new
results concerning a bipartite graph G(d, 8*), not stated in {5] and other previous studies.

Corollary 3 (Degree of a vertex w; :=t). In a bipartite graph G(d, 3*) corresponding
to the PRVP [P2] with (d, D), deg(vi;) is given by Corollary 2. Then for each t

el (52 |2 oo

where §* ;= min .

deg(w;) =

Proof. Consider a fixed time (or position) ¢. Then deg(w;) is a number of (i, §) pairs
adjacent to a vertex w;. Now that a graph is bipartite, in fact, deg(w;) has been already
determined by deg(v;;) in Corollary 2. Thus, deg(w;) is a number of a product ¢ which is
allocated at t position. Hence, from Equation (32), we get the result as required.

Corollary 4 (Linearly ordered set P;). In a bipartite graph G(d, 3*) corresponding to
the PRVP [P2) with (d, D), deg(v;;) is given by Corollary 2. Then for each i and ¢

[{ilzie =3} =|{jlvij~w}|=1 (37)
And for each i, (P;,3) is a linearly ordered set (i.e. chain) such that

vij Svip, ifandonlyif j<k
<t

or equivalently, v;; S vy if and only if ¢ <o,
where (v;; ~ wy,) and (Vi ~ we,) . (38)
Proof. We consider a fixed product ¢ and a fixed time (or position) ¢. Assume that

| {j |zt =7 }| > 2. Then there exists at least one element, say, j + 1 that satisfies Equation
(37). That is, ;s = j+ 1. From Equations (31) and (32), we get t = [j"'lri_ﬂ‘-’ , [j“"‘ﬂ'-l +

1,..., [ -7{?.- + 1J. Note that "U—l;:p—'] > [J;%,ii + lJ. This is a contradiction to
| {jlzit =3j}| > 2. This completes the proof.
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[t is obvious that a relation 3 satisfies a reflexive, an antisymmetric and a transitive prop-
erties. It suffices to confirm that a relation 3 is well-defined. Note that v;; ~ w;, if and
only if z;;, = j and vig ~ wy, if and only if z;;, = k. From the result of l {jlzie=13} | =1,
i # k if and only if t; # £2. In other words, t; > t; if and only if § > k or #; < t; if and
only if j < k. This completes the proof.

Remark 1. The lower bound of 3 given by Corollary 1 is obviously refined compared
to Steiner et al. ({5]) and Balinski et al. {[12}).

Remark 2. [A convex bipartite graph G(d,*)] The graph G(d, 8*) corresponding
to the PRVP [P2] is established as follows.
(1) Based on the n and d, calculate ryax.
(2) Using Equation (33), find the interval of a. T
(3) Let a = [0, 0, ..., T
Forb=1,2,... k,
(4) Set B := 5, where D := 37", ds.
(5) Calculate the values of ¢ for each ¢ and j by Equation (28).
(6) Join v;j := (4,7) and w; := 1.
(7) Obtain the bipartite adjacency matrix X of a graph G(d, Bb).
(8) Check whether or not there exists a perfect matching in the graph G(d,Bp) by the
rer(X). If exists, then (5, = #* and terminate. Otherwise, then set b «— b+ 1 and goto (4).

4.2 Convexity of a graph G(d, 3%)

Proposition 5.  The graph G(d, 3*) is always convex with respect to the vertexr set W but
15 generally nonconvez concerning the vertex set V.

Proof. (1) Always convex w.r.t. W : Obvious from Definition 4, Equations (34) and
(35) in Corollary 2.
(2) Generally nonconvex w.r.t. V : From Proposition 3 and Corollary 3, it is evident that

1 <degw; < n.

We consider two cases.

Case 1. degw; =1, V1.

This case indicates per(X) = [M| = 1. Thus, the graph G(d, 3*) is convex with respect to
the vertex set V by Definition 4.

Case 2. 3t such that degw; =w # 1.

tSee Equation (39)
tSee Equation (40)



Assume that the graph G(d,3*) is convex with respect to the vertex set V. Then from
Definition 4 of a convex bipartite graph, the vertex set V must be linearly or totally ordered
set with a certain relation R := 3. Note that from Corollary 4, for each i, P; is a chain in
V = UL, P: such that P;(P; = @ for any i # j. This implies a vertex set V should be a
partially ordered set without a certain relation R := 3. By Corollary 4 and the assumption,
we obtain
©  t~{lna) Gada) s G} 2 < w <,
(@) (i,51) 3 G2d2) 30 3 (Gwydu)s
(i) i1 # i # e #
Then by Definition 4, it is required that
t o~ {(ihjl)v (i21j2); Tty (iw:jw)} U
{(ilijl + 1)7 (ilvjl + 2)7 MR (ilrdix)) T (i2)j2 - 1)7
(i2,j2 + 1); (i27j2 +2)7 Tty (i27di2)7 Tt (iw,jw = 1)}7

which explains deg (w;) > w. This is a contradiction to deg (w;) = w.
Conclusively, the graph G(d, 8*) is generally nonconvex with respect to the vertex set V.

Remark 3. The graph G(d, #*) is convex with respect to the vertex set V if and only
if per(X) = M| = 1.

4.3 Bijection between optimal sequences and perfect matchings

In this subsection, we shall show that there exists a bijection between the set S of optimal
sequences and the set M of perfect matchings in the convex bipartite graph G(d, 8*). Also,
we shall arrange graph theoretic necessary and sufficient conditions for the optimality, i.e.,
the existence of perfect matching.

Theorem 12.  In the PRVP [P2] with (d, D) and its corresponding graph G(d, 8*), we
have |S| = |[M| = per(X).

Proof. From Equation (33), we get 8* := -QD: such that

* . 1
a € [D"dmaan_dmax+1’---,D_ 1])7'f 1—Tmax 2 5(1 _T'min)
a* € [[0.5(D — dmin)]1, [0.5(D — dmin)]1 + 1,..., D ~ 1], otherwise. (39)

This means the maximum numbers of iteration are

. 1
Omax ; 0f 1 —Tmax 2 ‘2‘(1 “Tmin)
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[0.5(D + dmin)] , otherwise. (40)

“"hus, we can find o* and B* with a finite iteration. In other words, we can obtain an
optimal sequence in the PRVP [P2] at all times. Then, by Equation (21), we get an edge
€s,jt ‘= Vs,j ~ w¢ such that j = x4, for all 54, ¢ = 1,...,D. Namely, an optimal sequence
implies a perfect matching. Now, suppose that there is a perfect matching in the graph

(d, 8*). Then, in this perfect matching, we can find }_., z; =t for all t. This fact is the
cefinition of an optimal sequence. Already, we have confirmed that there exists an optimal
sequence. Therefore, we conclude that a perfect matching in the graph G(d,*) can be
ensured at all times. Conclusively, there exists a bijection between the set S of optimal
saquences and the set M of perfect matchings in the convex bipartite graph G(d, 8*). That
is, § = M. And it is evident that |S| = | M| = per(X) by Theorem 9.

Proposition 6.  For any PRVP [P2] with (d, D) and its corresponding graph G{d, 8*),
tae following statements are equivalent.

(1) A sequence is optimal.

(2) There exists a perpect matching.

(3) A vertez covering number of G(d, 8*) is equal to a size of mazimum matching of G(d, 8*).
(4) A size of mazimum matching of G(d, 8*) is equal to D ==, d;.

(5) The permanent of a bipartite adjacency matriz X of G(d, B*) is greater than or equal to
1

Proof. Since G(d, 8*) is a bipartite graph, we obtain the following result by Theorem
10, Proposition 2 and Proposition 3.

2 < A(G) £ xu(G), 8(G) 2 1. (41)
Thus, from Theorem 4 and Theorem 5, it is clear that
a{G) + 7(G) = 2D, v(G) + p(G) = 2D, 7(G) = v(G), a(G) = p(G). (42)
On the other hand, we see that
IM|#£0& [NV = Vs, VVs SV & V| =W =7(G)=v(G) =D (43)

by Theorem 6, Theorem 7 and Theorem 8. This implies that

(2) & 3) « (4). (44)
A:nd Theorem 9 gives us
IM| # 0 & per(X) > 1. (45)
Therefore,
@) « (5). (46)
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Finally, from Theorem 12, it is obvious that
(1) & (2). (47)

Conclusively, combining all equations (44), (46), and {47) in one, we have the results as
required.

4.4 Examples

In this section, we consider seven examples. As aforementioned in the previous sections 1,
2 and 3, we can apply three approaches to the PRVP as follows.

o Integer programming approach (abbreviated to IP approach),

o Balanced sequence approach (abbreviated to BS approach) and in discussion,

o Convex bipartite graph approach (abbreviated to CBG approach).

Through these examples, we would like to claim many advantages for the CBG approach
in comparison with other approaches.
4.4.1 The case n =2

Example 2. Consider the instance d = (3,2). We shall apply IP and CBG approaches
to this example.

Table 2 gives an optimal solution for z;’s and § which are numerically analyzed by
the method of the integer programming. Table 2 shows that an optimal sequence is s =

Table 2: IP approach : z;’s optimal values under d = (3,2) and 3* = £

A T 2 3 ! 5
T T T i 2 3
) 0 T T 7 i

(1,2,1,2,1), since x11 > 10, T22 > T21, T13 > T12, T2a > T23, T15 > T14-
By Remark 2, we obtain the edge set E = {811’1,612,3,613,5,621,2,622’4} and g* = %
And the bipartite adjacency matrix is given by

12345
(1,1)f1 0 0 0 0
2,1){0 100 0

Xsxs= (1,2){0 0 1 0 0
2,2){0 0 0 10
1,3)\0 0 0 0 1
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Thus, we get
M| = per(X) =1, det(X) = 1, rank(X) =5

and the optimal sequence s = (1,2,1,2,1). Note that this optimal sequence is balanced and
periodic from Theorem 1 and Lemma 1.

Example 3. Consider the instance d = (6,4) = 2-(3,2). We shall apply CBG approach
to this example.

In the same manner, by Remark 2, we get the edge set

E= {611,1, €12,3, €13,5; €14,6, €15,8, €16,10, €21,2, €22 4, €23,7, 624,9}

and §B* = 1;40. Thus,
IM| = per(X) = 1.
The optimal sequence is s = (1,2,1,2,1,1,2,1,2,1), which is periodic by Lemma 1. In
g2neral, if d = n - (3,2), then the unique optimal sequence can be described as
n times

Zl,Z, 1,2, 1)(172,152: 1) Tt (172’ 1727 15

44.2 Thecasen=3

The following two examples are based on the Theorem 2 and Lemma 1.

Example 4. Consider the instance d = (4,2,1). We shall apply IP, BS and CBG
adproaches to this example, respectively.

In Table 3, it is clear that the optimal sequence is s = (1,2,1,3,1,2,1).

Table 3: IP approach : z;;’s optimal values under d = (4,2,1) and 3" = ,—?

Nt 1 2 3 ! 5 6 7
T 1 1 2 2 3 3 7
710 T T T T p) )
3 O 0 0 T T T T

In BS approach, the optimal sequence has been reported by s = (1,2,1,3,1,2,1) ([3, see
Theorem 2.19.]).
And from Remark 2, the edge set is

E= {ell,ly €12,3, €13,5, €14,7, €21,2, €22,6, 331,4}



with g* = -‘?i In addition, we confirm that the bipartite adjacency matrix is

1234567

(1,1) /1 0 0 0 0 0 O
2,1)]0 10000 0
(1,20 01 0 0 0 0
Xoxr=(3,1)]0 001000
(220 000010
(1,30 0 00 10 0
(1,4 \0 0 0 0 0 0 1/

Hence,
M| = per(X) = 1, det(X) = —1, rank(X) = 7.

Likewise, the optimal sequence is s = (1,2,1,3,1,2,1).
Example 5. Consider the instance d = (3,3, 1).

In section 3, we have already stated the optimal solution by IP approach: the optimal
sequence is s = (2,1,1,2,3,2,1).
Now, let us consider the CBG approach. By Remark 2, we have the edge set

E = {611,1,611,2,812,3,612,4,812,5,613,6,613,71621,1,621,2,

€22,3, €22 4, €225, €23,6, €23,7, €31,2, €31,3, €31 ,4, €31,5, 831,6}

and B* = % From this edge set, the bipartite adjacency matrix is given by

1234567

(L) /1 100000
(1)1 10000 0
(1,2) {0 0 1 11 0 0
Xoxr=(B,1)[0 111110
(220|001 1100
(,3){0 0 0 0 0 1 1
(23)\0 0 0 0 0 11

And by this bipartite adjacency matrix, we have
|M| = per(X) = 24,

which explains that the number of all the perfect matchings (i.e. optimal sequences) is 24 in
this example. For further particulars, see Table 4. In Table 4, 3° 3", , |it — try| denotes the
total deviation. Note that there exist eight sequences which minimize the total deviation.
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Table 4: CBG approach : All the optimal sequences (i.e. perfect matchings) under d =
(3,3,1) and §* = %

S e — i) 1 b} 3 ) 5 6 7
17/7 T P 1 2 3 1 2
17/7 1 2 1 2 3 2 1
15/7 T 2 1 3 2 1 2
15/7 1 2 1 3 2 2 1
1777 ) 7 2 T 3 T 2
17/7 1 2 2 1 3 2 1
1577 T 2 ) 3 1 1 p)
15/7 1 2 2 3 1 2 1
13/7 T 2 3 1 2 T p)
13/7 1 2 3 1 2 2 1
13/7 1 2 3 2 1 1 2
13/7 1 2 3 2 1 2 1
1777 p) T T 2 3 1 2
17/7 2 1 1 2 3 2 1
157 2 1 ) 3 2 T 2
15/7 2 1 1 3 2 2 1
77 2 T 2 1 3 1 p)
17/7 2 1 2 1 3 2 1
15/7 ) T 2 3 1 T 2
15/7 2 1 2 3 1 2 1
13/7 2 T 3 T 2 12
13/7 2 1 3 1 2 2 1
13/7 2 1 3 2 1 1 2
13/7 2 1 3 2 1 2 1

4.4.3 The casen=4

The following three examples are on the ground of Theorem 3, Proposition 1 and Lemma 1.

Example 6. Consider the instance d = (8,4,2,1). We shall apply CBG, BS and IP
approaches to this example, respectively.

By remark 2, we have the edge set

E = ({ei1,,€123,€13,5,€14,7,€15,9,€16,11, €17,13,

€18,15, €21,2, €22,6, €23,10, €24,14, €31 4, €32,12, €41,8 }
and §* = . And we obtain
|IM| = per(X) =1, det(X) = ~1, rank(X) = 15.
Therefore, the optimal sequence is given by

s=(1,2,1,3,1,2,1,4,1,2,1,3,1,2,1).
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On the other hand, the same optimal sequence
s=(1,2,1,3,1,2,1,4,1,2,1,3,1,2,1)

has been given by [3, see Theorem 2.20.].

Table 5 gives an optimal solution for z;;’s and 3 which are numerically analyzed by the
method of the integer programming. Of course, the optimal sequence is the same as the one
in CBG and BS approaches.

Table 5: IP approach : z;;’s optimal values under d = (8,4,2,1) and 8* = 1—75

NGl 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1T 2 2 3 3 4 4 5 5 6 6 7 _7 8§
2 o 1 1T 1 1T 2 2 2 2 3 3 3 4 4 4
3 0 00 I T T T T"1T T 1T 2 2 2 2
4 0 00 0 0 00 1T 1 1 I 1 T 1

Example 7. We consider the instance d = (2,1, 1, 1) by the approaches of IP and CBG.

Table 6 gives an optimal solution for z;;’s and 5. In Table 6, we find the optimal sequence
s=(1,3,2,4,1).

Table 6: IP approach : z;'s optimal values under d = (2,1,1,1) and 8* = -;1

T\E 1 P) 3 1 5
1 1 1 1 T 2
p) 0 0T T T
3 0 T T T T

7 0 0 0 T T

In CBG approach, we have the edge set

E= {611,1, €11,2, €124, €12,5, €21,2, €213, €21,4, €31,2, €31,3, €31,4, €41,2, €41,3» 841,4}

and §* = %— The bipartite adjacency matrix is as follows.

12345
(L) {1 1.0 0 0
(2010 1 110

Xsxs= (1,2)]0 0 0 1 1
3,1)]0 1110
(4,)\0 1 11 0
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Hence,

|M] = per(X) = 6.
And the optimal sequences are given by
(1,2,3,4,1), (1,4,2,3,1), (1,3,4,2,1),(1,4,3,2,1), (1,2,4,3,1), (1,3,2,4,1).
All of the optimal sequences have a same total deviation value of %.

Example 8. Finally, let us consider the instance d = (4,4,2,1) by the approaches of
CBG and BS.

To begin with, by Remark 2, we have the edge set
E = {e111,€112,€12,4,€12,5,€137 €13,8, €14,10, €14,11, €211, €21,2,

€22,4, €225, €23,7, €23,8, €24,10, €24,11, €31,2, €31,3, €31 4, €32,8,

€32,9, €32,10, €41,4, €41,5, €41,6, €41,7 641,8}

and g* = 1—71 The bipartite adjacency matrix is described as

[y
(=]
—
-

(1’ 1)
(2,1)
(1,2)
31)
(2’2)
Xuxu = (1,3)
(4,1)
(3,2)
(2,3)
(1,4)
(2,4)

.

O O O O OO0 O O O M = =
OO OO0 00O O N
O OO0 O O OO0 - OO0 O W
OO OO = QO =D O
O O O O - O - O = O O
[ = R R = A L — B — I = I = R I R =}
(= R~ R R = R o B o B o~ B e B |
O O i - O OO O O
O OO - OO0 0o oo O ©
-0 = OO O 00 oo

Lo = T e B oo Y o B e B o B = B e B =

N—

Thus, we have
|M| = per(X) = 16.

And the optimal sequences are given by Table 7.
In BS approach, Altman et al. ([3, Appendix]) has reported the optimal sequence of the
above example as follows:
(1,2,3,1,2,1,2,3,1,2,4).
R:grettably, the sequence they have stated is by no means optimal. Consider deviations for
each time (or position). They are given by

7 3 5 6 2 9 5 6 8 4 0

T n



Table 7: CBG approach : All the optimal sequences (i.e. perfect matchings) under d =
(4,4,2,1) and B* = &

2 Dig [Tit — tri
42/11
/11
3/11
22/T1
/11
/11
/11
42/11
42/11
/11
/11
12/11
52/11
2/11
D/11
22/11

[
(=
i
[

2 BOF D] D] B DO B DO ] 1tf brad st bmt] ] i bif] 4
] =] e | e ]t DNOT D] NI NI O] NI DN DO DO
QoF QO COf Gl Qo Qo QO Qof Qo] L L] Cof G} o Qo G} O]
NI NI DN BO] besf ] =] =] D] DO DO} DO =3f bt et | it b
af ] =] =] BOF DO O] D] = = = =] NI DOt ] B[ O
A&&AQQ%A&AA.&EA»&%Q
O] 1O} =1 = N ] =] =] DO DO =] =4 BN} NI rt] k=i =]
=1 = B N = = 5] BOf =1 =] D] 2] = =1 2| Do} ool
Qo] Cof Qo] Qo] Lo Lol G Lol Lol S L] o] Lot Lo Lo ]} ©
DO | D7 = 1] =] O] F=f DI 4§ NI +—4f DN} k] DNOf

=] BN] = 0] = DO =] D] =] D] =] D] 2t DO = BN

And a total deviation is 82. Note that the deviations of ¢ = 6,9 are a contradiction to

11
B =1t
i1

5 Concluding remarks

5.1 Summary and contribution

The PRVP is to find a sequence that minimizes the maximum value of a deviation function
between ideal and actual demands.

The PRVP is an important scheduling problem that arises on mixed-model assembly
lines. And it is possible for us to exhibit the link between balanced sequences (word combi-
natorics) and this scheduling problem.

The objective of this study is to show that we can provide a more efficient and in-depth
procedure with a graph theoretic approach, not an integer programming one, in order to
solve the PRVP. To achieve this goal, we propose formal alternative proofs for some of the
results stated in [5], and establish several new results and problems in terms of graph theory.

The very core of our methodology is to establish the convex bipartite graph G(d, 5*)
corresponding to the PRVP. Then, the existence and the number of perfect matchings in the
graph G(d, 8*) (i.e. optimal sequences in the PRVP) can be confirmed by the permanent
of the bipartite adjacency matrix.

We give the outline of our study as follows.
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¢ We have proposed two formal alternative proofs for the results stated in [5]: the lower
bound of 8* and the degree of vertex v;;. (see Proposition 4, Theorem 11 and Corollary
2)

e Also, we have provided two new results not stated in [5, 12]: the degree of vertex w;
and the refined lower bound of 3*. (see Corollary 3, 4 and 1)

e We have introduced a procedure for the construction of the graph G(d,S*). (see
Remark 2)

¢ We have proved that the graph G(d, 5*) is always convex with respect to the vertex
set W. (see Proposition 5 and Remark 3)

o We have confirmed that an optimal sequence corresponds to a perfect matching in the
graph G(d, 8*). That is, |S| = | M| and there exists a bijection from S to M. This
implies that an optimal sequence in a integer programming approach is equivalent to
a perfect matching in a graph theoretic approach. (see Theorem 12)

o Finally, we have established several new problems of the PRVP in terms of a graph
theory. (see Proposition 6)

And the contributions of our study to the PRVP are as follows.

Remark 4. Our lower bound of 8 given by Corollary 1 is obviously refined compared
tc Steiner et al. ([5]) and Balinski et al. ([12]). So it is required only a few iterations to
sclve the PRVP, which explains

Number of iterations = dpay, if 1 — Tmax = -;—(1 — Tmin)

Number of iterations = [0.5(D + dmin)], otherwise

Remark 5. Our study provides an efficient and exact solution to the minimization prob-
len of a total distance (or deviation), abbreviated the MPTD, since the optimal solutions
to the MPTD exist in the optimal solutions to the PRVP. That is, for the set of optimal
solutions to the MPTD, denoted by &, there exists an injection from & to S.

5.2 Further studies

Ficst of all, the CBG approach shall be applied to the MPTD. This is only the extension of
the PRVP to the MPTD. Hence, it may be not a difficult work.

With respect to the Remark 4, we conjecture that for any n, there exists a closed form
solution to the MPMD such that dwax = 3. Note that there exists a closed form solution
to the MPMD in case of dyax = 2. To achieve this goal, we would like to suggest the use
of the characteristic polynomial of an adjacency matrix or a bipartite adjacency matrix and
thz study of the Fraenkel conjecture.
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Finally, we shall investigate the area to which the CBG approach can be applied, such
as scheduling problems, queueing network, word combinatorics and so forth.
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