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Abstract

The column generation process for the
set-partitioning model of the vehicle routing problem
requires repeated solutions of column generation
subproblems which has a combinatorial structure
similar to that of the traveling salesman problem.
This limits the size of the problem that can be
addressed. We introduce a new modeling approach,
termed route-splitting, which splits each vehicle route
into segments, and results in more ftractable
subproblems. A lower bounding scheme that yields an
updated bound at each iteration of the columz
generation process is developed. Implementaticn
issues, including a technique of controlling columns
in the master problem, are explored. Lower bounds
are computed on standard benchmark problems with
up to 199 customers.

1. Introduction

Given sets of geographically scattered customers
with known demands and vehicles with known
capacity, the vehicle routing problem (VRP) is to
determine a set of feasible vehicle routes, one for
each vehicle, such that each customer is visited
exactly once and the total distance traveled by the
vehicles is minimized. A feasible route is defined as
a simple circuit including the depot such that the
total demand of the customers in the route does not
exceed the given vehicle capacity.

Being at the interface of theory and application,
the VRP has been intensively studied. While there
have been significant advances in exact solution
methodology, VRP is not a well solved problem. We
find most approaches still relying on the branch and
bound scheme. These approaches employ various
methodologies to compute a lower bound on the cost
of the optimal solution. We cite four distinct
approaches in this category: dynamic programming,
constraint relaxation, minimum K-tree, and continuous

set-partitioning relaxation.

The state-space relaxation of Christofides,
Mingozzi and Toth (1981) is an example of the
dynamic programming approach. The main weakress
of dynamic programming approaches is that the
search tree becomes very large easily. The state-space
relaxation method is a relaxation on the domain of
the states using ¢-paths (chains of nodes whose total

weight is equal to g) to reduce the number of stites

in the tree search. The largest problem solved was a
25-customer, 8-vehicle VRP.

Laporte, Nobert and Desrochers (1985) adopted a
relaxation of  sub-tour  elimination  constraints.
integrality of the solution is sought by the addit on
of Gomory cuts and afterwards by a branch znd
bound algorithm, where violated subtour eliminat on
constraints are added as required. Problems with up
to 50 customers were solved to optimality.

Fisher (1994) generalized the I1-tree relaxation of
Held and Karp (1970) and introduced the K-tree
relaxation for the standard VRP, where K is the
number of vehicles. He dualized the constraints
enforcing vehicle capacity and node degree to obtain
a Lagrangean lower bound. Based wupon this
relaxation, he developed a branch and bound
algorithm  which  optimally solved up to a
100-customer, 10-vehicle problem.

A set partitioning formulation of the VRP selects
the optimal set of routes from a menu of feasible
routes. The main obstacle is that all feasible routes
must be considered. Since these are exponential in
number, a column generation scheme must be
devised. However, the cost coefficient for ea:ch
column is the cost of the TSP tour on the customers
in the route represented by the column. As a result,
the column generation subproblems can be solv:d
efficiently only when the number of customers is
small, or when the number of the feasible routes is
substantially reduced due to side constraints whizh
enables an efficient dynamic programming soluticn.
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For an instance of the former, see Agarwal, Mathur
and Salkin (1989) for a scheme that optimally solves
problems with up to 25 customers. Desrochers,
Desrosiers and Solomon (1992), in an instance of the
latter, report a very successful application of this
approach towards exact solutions of 100-customer
VRP with tight time windows. In the absence of side
constraints,  the  set-partitioning  approach s
computationally limited. However, its strength lies in
its ability to accommodate side constraints and other
real world variations in problem characteristics, and
often with gain in computational efficacy.

In this paper, we seek to improve the lower
bounding from the continuous set partitioning/column
generatior. approach to the VRP. We introduce a new
modeling approach, called route-splitting, that reduces

the computational burden of generating columns by -

splitting a vehicle route into a number of segments.
This allows an efficient solution of the column
generation subproblems and offers a chance to
compute ower bounds for VRPs beyond the current
computational range.

2, The Route-Splitting Approach

Let N be the set of N customers (2 =1 to N)
with demand ¢;, and let K be the set of K
vehicles (¢ =1 to K) located at the central depot~0
with capacity @. Define G= (N{ {0}, A) to
be a network, where arc (¢,7) € A represents travel
from node~2 to node~j of G at distance d;. VRP

can be formulated as a set-partitioning problem, in
which we say a row (constraint) is "covered" by a
column if the column has a value of 1 in the row.
The objective is to choose a minimum-cost set of
columns such that the rows are partitioned into
subsets each covered by exactly one column.

Let P be the set of all feasible routes, and let
a, be a binary column representing route 7 € R.

Define z, to be a decision variable having a value 1
if route 7 is taken, and O otherwise. Let d, be the

traveling distance of route 7, the sum of the distance

of the arcs in the route. The set-partitioning model of
VRP is then

(SPP) minimize Y, d,z,

re R

> az =1

r€R

Zx,=K

subject to

where a, satisfies  the condition

'r

- a,< (). Here is an vector of customer
q T

feasibility

demands, and @) is the vehicle capacity.

Define  the cardinality of a route to be the
number of customers in the route. Due to the
combinatorial  nature, the column generating
subproblem can be solved efficiently when the route
cardinality of each route is small. This observation
suggests a new VRP model in which routes are split
into  smaller segments called pieces. The
route-splitting approach has the effect of transferring
the computational burden from the subproblem to the
master problem. It is worth the effort since the
master problem is a linear programming problem,
whereas the subproblem is a combinatorial problem.
The master problem, being an LP, is computationally
less sensitive to size.

The  route-splitting  approach  allows an
asymmetric distance matrix and non-identical vehicles.
The objective of the route-splitting VRP is to find a
set of pieces which will be connected to make a set
of routes that is the optimal solution to the VRP.

In the route-splitting model (denoted RS), a
column (variable) represents a piece. The number of
pieces in a route is fixed a priori. Let ns be the

fixed number of pieces in a route. Now z, has a
value of 1 if the piece represented by the column
r € R is chosen as a segment of a route in the
solution to the VRP, and O otherwise, where R is
the set of all columns representing valid pieces.

Below, we will use terms variable 7 and picce
T interchangeably. Let b(7) be the first node in
piece 7, and e(r), the last node. For I-piece T,
b(r)=0, and e(r)= 0 for ms-piece . For
O-piece 7, b(r)= e(r)=0. Let N(r) be the set
of customers in piece 7. The traveling distance of
piece T, d,, is the sum of the distances of the arcs
in piece~r. The load of piece~7, q,, is the sum of
the demands of the customers in piece~T excluding

that of e(r): that is, q,= q;. Finally,

ie N(r)\ e(r)
let R(k,s) be the set of all valid s-pieces generated
for vehicle k, and define R(k) be the union of ail
R(k, s). We now formulate RS as:

®S) minimize Y, d,x,

reR
subject to

2 z,=1 Vi
r|ie N(r)\e(r)



r€ R(k)
z,+ z,=1 Yk s
re R(k0) re Riks)
Z} T, — z,
re Rk s) | blr)=i re R(ks—1)] e(r)=i
=0 Viks=2
z, € 0,1} VreR

A set of valid pieces should conform to the
following conditions to be a feasible solution to the
VRP:

1. They comprise K groups, each of which consists

of either a single O-piece or 7§ pieces such that

each piece is connected to the next piece in
sequence.

2. Total demand of each group does not exceed the
corresponding vehicle capacity.

3. Each customer is visited exactly once.

3. Solving the LP-Relaxation of RS

We consider a LP relaxation of RS (LRS) tc be
solved by a column generation process. We then
introduce a method to obtain lower bounds that are
to be updated during the column generation process.
The column generation process starts each iteration
with a subset of feasible columns that contains a
feasible basis. These columns define an LP which
we call a (restricted) master problem; the dual vector
obtained by solving it is used to form a subproblem
to determine the minimum reduced cost column
among all feasible columns to the master problem. If
the subproblem fails to find a column with a
negative reduced cost, the algorithm terminates and
the current solution of the restricted master problem
is optimal to the unrestricted LP containing all
feasible columns. Otherwise, a column with a
negative reduced cost is found, added to the master
problem, and the algorithm solves the master problem
again.

While difficult to solve by a standard IP
approach, the subproblem is constrained enough to be
solved by a tree-search-with-bounds algorithm. The
algorithm traverses a search tree for each piece type.
The root of each tree consists of a singleton: a
customer, except for a O-piece or a l-piece in which
it is the depot. Traversing down the tree, a customer
is sequentially added to the piece. Note that the
cardinality restriction constrains the tree's height and
provides a lower bound on the reduced cost of the
column, allowing faster pruning.  Algorithmic
descriptions of the column generation subproblem are
given in Kang (1994).

4. Computational Issues

For the standard VRP, a good feasible solution
can be found using one of the several fast heuristics
available. In our experience, such initialization did not
lead to a faster convergence. Instead a basis
initialization using artificial variables was superior.
Some previous research using column generation,
Lavoie, Minoux and Odier (1988), reports a similar
experience.

Multiple pricing is to append to the master
problem not only the minimal reduced cost column,
but also severai other negative reduced cost columns
in each iteration. It often leads to a reduction in
the total number of iterations, but at the cost of
increased solution time for each iteration. This
multiple pricing scheme was effective in acceleraing
the convergence of the column generation process
(Desrochers and Soumis, 1989). Our subproblem
solution algorithm allows multiple pricing wittout
additional computation.

Computationally, there are two impor:ant
concerns in implementing a column generaion
algorithm. First, the management of a typically lerge
number of columns. We note that the coluicas
generated in the route-splitting approach are likely to
be fewer than in the set-partitioning approach. The
reason is that pieces can be used to form many
routes in combination. Cnce generated, a piece is
more “versatile" than a route. However, the probem
of a large number of columns remains. Second, sow
convergence, or stalling, due to heavy degeneracy is
not uncommon with set-partitioning based formulations
(Desrochers, Desrosiers and Solomon, 1992), because
each positive basic variable can cover many rows
exactly. Other variables with a positive coefficient in
already covered rows are forced to zero values. This
means that we have many zero-valued basic variabies
which can be chosen freely from a number of
forced-to-zero variables. This results in many beses
associated with any feasible schedule.

We now introduce an implementation scheme to
deal with the above computational concerns. In the
column generation process, once a variable leaves the
basis, it is not likely to enter the basis again,
because dual variables in an earlier stage are
generally far different from the optimal set of dual
variables. We applied the following scheme, called
column-set reduction, in our implementation: Deete
all non-positive variables, including basic variab es,
when (1) the number of columns is larger thar a
predetermined limit, and (2) the improvement in the
objective function value since the last column-set
reduction exceeds a predetermined threshold value.
Even though some of the deleted columns may have
to be re-generated during the process, the total
computational time will be reduced significantly siice
master problems stay relatively small so as to be
solved fast, and the convergence problem would be
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relieved as the number of zero-valued columns, the
cause of degeneracy, are controlled to a relatively
small numter. We tried less radical altermatives such
as not deleting some number of most recently
generated columns, pricing out the set of deleted
columns, and solving the subproblem only when no
negative reduced cost columns are found among the
deleted ones. Our computational experiments
supported the scheme outlined above.

5. Computational Experiences

The algorithm was tested on five test problems.
Each problem has identical vehicles and a symmetric
distance metrix. Problems v50, v75, and v100 are
taken from Eilon, Watson-Gandy and Christofides
(1971). Problem v150 was obtained by aggregating
the customers of problems v50 and v100 with the
depot and vehicle capacities as in v100. Problem
vl199 was cbtained by aggregating the customers of
problem v150 with the first 49 customers of problem
v75. Euclidean distance between the points is
computed as a real value.

KT | KT RS
UB LB | CPU maxBr CPU RS LB
4 1 502
v50 | 523 507 96 5 1 503
6 5 504
4 3 766
vi5 | 835 | 756 | 184 5 3 770
6 51 772
4 13 768
vi00 | 826 786 308 5 17 77
! 4 73 914
v150 | 1028 | 933 | 682 5 103 94
4 234 1148
g
vi99 | 1335 | 1097 | 1186 5 288 1156

—

. CPU times are in minutes

2. UB is the OFV of the known best solutions.

3. KT LB is the lower bounds by Fisher's K-tree
approach 1'1994)

4. RS LB is the lower bounds by Fisher's K-tree
approach 1'1994)

5. KT CPU is the CPU time on an Apollo Domain
3000, and RS CPU, on Pentium II 800MHz..

6. maxBr is the maximum cardnality of a piece.

Results of B&B Search on Cardinalities of the Vehicles
for Lower Bounds

maxBr depth CpPU LB
1 2 507
2 3 508
v50 5 3 4 509
4 8 509
5 8 509
v75 5 2 12 783
v100 5 2 90 786
v150 5 2 418 939
vi99 5 2 980 1170

0. Times are in minutes.

1. "depth" 1is the number of vehicles whose

cardinalities are limited in range.
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