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Abstract

This paper proposes a genetically inspired adaptive clustering algorithm. The algorithm automatically
discovers the actual number of clusters and efficiently performs clustering without unduly compromising cluster
purity. Chromosome encoding that ensures the correct number of clusters and cluster purity is discussed. The
required fitness function is designed on the basis of modified similarity criteria and genetic operators. These are
incorporated into the proposed adaptive clustering algorithm. Experimental results show the efficiency of the
clustering algorithm on synthetic data sets and real world data sets.

1 Introduction

Clustering refers to the operation of grouping objects with
similar patterns within given data sets. This is an important
task in many applications including bio-informatics, web data
analysis, information retrieval, CRM (customer relationship
management), text mining, and scientific data analysis [1].
The literature is replete with distance-based, density-based,
graph-based, model-based, and evaluation-based clustering
methods [2). An appropriate decision threshold is crucial to
the success of these methods. This threshold is a priori
unknown in real world applications.

Accurate clustering involves the two features listed below

[4]:

® The number of clusters: This is the number of clusters
that results after optimal clustering.

® Purity: This is the number of objects primarily belonging
to a single class that each cluster contains. The larger the
purity value, the better is the result of clustering.

If the number of clusters is the same as the number of
clusters that is already known and the purity is as high as
possible, then the clustering procedure is effective and
acceptable. The number of clusters is intimately related to
purity. Purity deteriorates rapidly when the number of
predicted clusters is small and the cluster size is large. Cluster
validity index helps in this regard [3]. An appropriate
decision threshold is very important for acceptable results.

For example, in the clustering algorithm based on
partitions, the predicted number of clusters (k) is a crucially
important variable that impacts on whether some objects are
included in the same cluster or not. The threshold and related
variables play an important role in ensuring the discovery of
the actual number of accurate clusters with acceptable purity.
They are decided by trial and error through complicated
procedures [1], [5]. Cluster validity indices are the
culmination of efforts in this direction. These approaches do
not solve the primary problem of selecting the threshold for
real world data sets.

Evolution-based clustering and genetic algorithm-based
clustering offer hope in this regard. It must be pointed out,
however, that early genetic algorithm-based clustering
algorithms such as GKA still select the appropriate threshold
from among many suggested thresholds [6], [7]. Fitness
functions arising out of cluster validity indices have also been
studied extensively. There is also the problem of the decision
that transforms the threshold to the specific, related variable.
Automatic computation of decision thresholds is under
investigation of late.

CHyGA is a genetic algorithm-based clustering algorithm
[8]. However, CHyGA adopts an existing cluster validity
index, viz., the Calinski and Harabasz criterion (CH). This
algorithm uses a fitness function and mutation operators.

This paper proposes an adaptive clustering algorithm
based on genetic algorithm that maintains the number of
actual clusters and purity. The proposed algorithm
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automatically decides the threshold. The paper is divided into
two parts. The first part discusses a chromosome encoding
method using a new mechanism that involves the number of
actual clusters and purity. The second concems the fitness
function designed on the basis of similarity and dissimilarity
discussed in section 2. The proposed clustering algorithm is
not hampered by the threshold decision problem like many
existing clustering algorithms. It returns the patterns with the
correct number of accurate clusters and maintains cluster
purity.

Section 2 shows the similarity criterion that is needed in
the design of the fitness function. Section 3 develops the
proposed algorithm. The new chromosome encoding method
and the fitness function are described there. Sections 4 and §
present experimental results and conclusions respectively.

2 Similarity criteria

This section presents a modification to the existing distance-
based similarity. This leads to an adaptive clustering
algorithm that forms clusters while continuously monitoring
cluster accuracy and purity.

Similarity The proposed algorithm adopts distance-based
similarity. Distance measurements generally include
Euclidean, Manhattan, and Chebychev distances. The
proposed algorithm uses Euclidean distance for similarity
measurements. It involves relations between centroids and
objects [2]. The proposed intra-similarity and inter-
dissimilarity follow this kind of approach.

Intra-similarity The intra-similarity is the mean of the
distances among centroids and objects in the same cluster. In
the case of three and four clusters, the intra-cluster distance
of four clusters is smaller than that of three clusters, and the
intra-similarity of four clusters is larger than that of three
clusters (See Figure la). Moreover, the intra-similarity
induces larger clusters during grouping. This is the same as
the well known definition of intra-similarity.

Inter-dissimilarity The proposed inter-dissimilarity is
different from existing inter-dissimilarity. This involves
relations between centroids of clusters and all the objects
during clustering. The inter-cluster distance for a single
cluster is given by the sum of distances between the cluster
and the objects. In the case of three and two clusters for
instance, the inter-cluster distance of two clusters is smaller
and the inter-dissimilarity is larger than that of three clusters
(See Figure 1b). The proposed inter-dissimilarity different
from intra-similarity derives smaller clusters during grouping.

SYE @

(a) Clustering results derived by intra-similarity (from three to four clusters)

(b} Clustering results derived by inter-dissimilarity (from three from two clusters)
Figure 1. The trade-off between intra- and inter-dissimilarity

The proposed algorithm uses the larger of the intra-
similarity and inter-dissimilarity values. The correct number
of accurate clusters and high purity occur when both have
larger values. If the intra-cluster distance and inter-cluster
distance are small during grouping, then the objects in the
same cluster have similar patterns and they are therefore
naturally included in the same cluster. This is similar to the
cluster validity index - if the cluster validity index after
merging and splitting of objects has a larger value than before,
then the two objects are similar and are included in the same
cluster. If cluster validity index has to exhibit the smaller
value, the optimum value is small after grouping the objects.
In contrast, if the cluster validity index has to exhibit a larger
value, then the optimum value is larger after grouping the
objects [3]. However, this paper is also concerned with the
design of a fitness function so as not to lose the information
on the number of accurate clusters and cluster purity during
evolution.

3  The proposed algorithm

This section describes the genetic algorithmic framework of
the proposed adaptive clustering algorithm. Two keys issue in
this regard pertain to a new chromosome encoding method
and a new fitness function. The genetic operators of the
proposed algorithm are also described.

3.1 Chromosome encoding

Existing clustering algorithms based on genetic algorithms
involve cluster purity. The number of accurate clusters can
not be accommodated as they rely primarily on binary
chromosome encoding. Non-binary encoding for purity is
controlled by cluster indices for chromosomes as in Figure 2a
[6], [7]. Thus, these chromosomes do not have the
information about the number of accurate clusters for
dominant genes (dominant cluster indices) and recessive
genes (recessive cluster indices) in chromosomes. If
chromosomes are evolved with the information about
dominant and recessive genes, then the chromosomes with
the dominant character can be propagated to the next
generation (See Figure 2b).

In this study, an approximate range of threshold is
suggested. The chromosome encoding is illustrated by a
simple example (See Figure 2b).
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Figure 2. Chromosome encoding

Hence, K is the number of distinct values that genes can
take in chromosomes. K is decided from a uniform
distribution over the range from one to eight. Cy, is the set of
K characters selected from the same distribution. In other
words, K is the number of cluster indices that objects can take
when clusters are grouped, and C is the set of indices of X
clusters. Each chromosome is considered with the number of
clusters (threshold) according to K and the purity according
to Cx. For example, in Figure 2b, Chromosomes are
encoded by a range of eight clusters.

3.2 Fitness function

General cluster validity index and fitness function for
distance-based clustering algorithms are designed on the
basis of similarity [8]. In the design of the fitness function for
genetic algorithm-based clustering-algorithms, the Euclidean
distance is quite appropriate. In this study, we use the
Euclidean distance to design the fitness function. The fitness
function is based on the intra-similarity and inter-
dissimilarity between centroids and objects. This fitness
function uses the selection and evaluation of genetic
algorithms (as in section 3.3).

Recently, genetic algorithm-based clustering algorithms
have introduced fitness functions that involve the intra-
similarity and several additional mutation operators. We
consider intra-similarity and inter-dissimilarity (Section 2)
and design a new fitness function.

In the Equation 1 below, ¥ is the total number of objects
in specific data sets, K is the maximum value in an
approximate range of the number of predicted clusters, ¢y is
the centroid (of a cluster), x; are the objects, and 4 is the
dimension of the data set.

Fitness = Fit,,,, * Fit,
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Equation 1 is the fitness function of the adaptive, genetic
algorithm-based clustering algorithm. The fitness is accurate
when the value is small. Also, this is divided into two parts,
Fityy, and Fit,,., which have specific characteristics. If
Fit;,,, alone is used in the fitness function, it forms the
largest number of clusters. Conversely, if the Fit;,,, alone is
used, it forms the fewest number of clusters. The larger the
number of clusters, the lower is the fitness value. Equation 1
is similar to cluster validity index. However, Fit,y,, includes a
power to 1/d because the increase (decrease) rate of Fitiy,
and Fit;,,, are different. So, the power of 1/d reflects the
familiar increasing (decreasing) rate of Fit,,, and Fityye,.

33 Genetic operators

Genetic algorithms are stochastic search mechanisms. They
are efficient and effective search algorithms. They have been
successfully used in a variety of applications in business,
engineering, and science. Genetic operators needed in the
clustering algorithm based on genetic algorithms are
discussed below [6], (71, [8].

Initialization The earliest generation uses the new
chromosome encoding method suggested in section 3.1. The
size of the generation is defined by n=N*K*d.

Selection and evaluation The selection operator selects
the chromosome for evaluation, and the evaluation operator
calculates the fitness value of the chromosome for the next
generation. The tournament method is used in the proposed
algorithm, and this method extracts the chromosome (that
includes dominant genes) from out of the two chromosomes
which are randomly selected from among n chromosomes
and passes on the dominant chromosome to the next
generation. The tournament probability is 0.8, and the fitness
function is the one presented in section 3.2.

Crossover The crossover operator forms the new
chromosome from two chromosomes that carry dominant
genes that are selected as described above. It works with one-
point crossover and the crossover probability is 1.0.

Mutation If there is a single cluster index in the entire
chromosomes, then there is just one object. Mutation operator
is useful in this case.

Termination The algorithm
chromosomes have the same shape.

terminates if the

4  Experiments

In this section, we describe the performance measures and
experimental results.

4,1 Performance measure

The result of clustering is evaluated by the number of
accurate clusters and cluster purity. The cluster accuracy is
measured by how well the clusters have been formed and by
the number of clusters as compared with the number of
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suggested clusters. Equation 2 represents cluster accuracy.
Here, | C | is the number of computed clusters, and |¢| is
the number of suggested clusters.

Cluster Accuracy = ‘sﬂn )

where 4 is the Kronecker delta function.
We measure the error rate of clusters after grouping the
objects by Equation 3. The error rate counts the number of

objects misclassified. Here, e; is the impurity of a cluster.

fc|~1
I 3)
N

Error Rate =

4.2  Experimental results

We experimented with several data sets - three synthetic data
sets and two real world data sets. These synthetic data sets
are of 2, 3, and 4 dimensions, and all have four clusters. Each
dimension covers a Gaussian distributed interval. Ruspini and
Iris are the real world data sets. They have 4 and 3 clusters
respectively [9], [10]. Table 1 is the summary of
experimental data sets. Table 2 is the error rate for
experimental data sets clustered by the k-means algorithm.
The reported values are the threshold as £ and the mean of the
error rate of 100 iterations.

Table 1. Summary of experimental data sets

Data Objects  Dimension  Clusters
2d_data 200 2 4
3d_data 200 3 4
4d_data 200 4 4
Ruspini 75 2 4

Iris 150 4 3

Table 2. The error rate from the k-means algorithm

Data Threshold (k) Error rate
2d_data 4 0.0171
3d_data 4 0.0156
4d_data 4 0.0174
Ruspini 4 0.0160

Iris 3 0.0913

It is seen that the k-means algorithm classify well for given
experimental data sets. The error rate is nearly zero. Table 3
is the cluster accuracy and the error rate. Here, we can
compare with the error rate of the k-means algorithm and the
proposed algorithm for experimental data sets.

Table 3. The cluster accuracy and the error rate from the proposed
algorithm

Data Cluster accuracy Error rate
2d_data 1.0000 0.0001
3d_data 1.0000 0.0005
4d_data 1.0000 0.0000
Ruspini 0.9700 0.0013

Iris 1.0000 0.0283

For Table 3, the reported values are the mean of results of
100 iterations as well. It is seen that cluster accuracy is nearly
perfect and error rate is almost zero. This adaptive clustering
algorithm based on genetic algorithm is better than the k-
means algorithm in respect of the error rate. The efficiency of
the proposed algorithm and its ability to automatically decide
the threshold are noteworthy in terms of cluster accuracy.

5 Conclusion

This paper suggested an adaptive clustering algorithm based
on genetic algorithms. It automatically finds the number of
accurate clusters and efficiently performs clustering without
unduly compromising cluster purity. A modified similarity
criterion was suggested. The framework of genetic
algorithms was outlined for clarity. A new chromosome
encoding method that involves the number of accurate
clusters and the fitness function that have an adaptive trait for
clustering were also presented. Finally, the efficiency of the
proposed algorithm was demonstrated through experiments
on several data sets. We are also working on other types of
data and other types of fitness function.
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