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Abstract

Support vector machine (SVM) has been very successful in pattern recognition
and function estimation problems for crisp data. This paper proposes a new
method to evaluate interval linear and nonlinear regression models combining the
possibility and necessity estimation formulation with the principle of SVM. For
data sets with crisp inputs and interval outputs, the possibility and necessity
models have been recently utilized, which are based on quadratic programming
approach giving more diverse spread coefficients than a linear programming one.
SVM also uses quadratic programming approach whose another advantage in
interval regression analysis is to be able to integrate both the property of central
tendency in least squares and the possibilistic property in fuzzy regression.
However this is not a computationally expensive way. SVM allows us to perform
interval nonlinear regression analysis by constructing an interval linear regression
function in a high dimensional feature space. In particular, SVM is a very
attractive approach to model nonlinear interval data. The proposed algorithm here
is model-free method in the sense that we do not have to assume the underlying
model function for interval nonlinear regression model with crisp inputs and
interval output. Experimental results are then presented which indicate the
performance of this algorithm.

Key words : Interval Regression Analysis, Possibility and Necessity Models, Quadratic
Programming, Support Verctor Machine.

1. Introduction

In many real applications, information is often uncertain, imprecise and incomplete, which
can be represented by fuzzy data or a generalization of interval data. For handling interval
data, fuzzy regression analysis becomes an important tool and successfully applied to
different applications such as market forecasting, system identification, and so on. Fuzzy
regression analysis can be simplified to interval regression analysis, where interval
regression models are implemented. In interval linear regression, possibility and necessity
models have been employed under given interval data. Coefficients in interval regression
model are assumed to be interval. In fact, interval regression is regarded as the simplest
version of possibilistic regression analysis. Possibilistic regression analysis has been first
proposed by Tanaka et al.(1992) where a fuzzy linear system has been used as a regression
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model. To determine the interval parameters of interval regression models, a basic linear
programming (LP) or quadratic programming (QP) problem should be solved.

In previous LP-based approaches, some coefficients become crisp because of the
characteristic of LP, since these regression analyses have been reduced to LP problems. To
overcome this crisp characteristic of LP, Tanaka and Lee(1998) propose interval regression
analysis based on QP. They adopt the dual method for solving their QP formulations. First,
they introduce a basic formulation where the sum of squared residuals of the estimated
interval outputs is considered as an objective function. This QP based approach is more
flexible than the LP based one in the sense that the noncrisp coefficients obtained by QP
are more desirable than those by LP. Next, they introduce another QP formulation that
combines the property of central tendency in least squares and the possibilistic property in
fuzzy regression. This approach has more central tendency than their previous approaches.

In this paper, we propose a new method to evaluate interval linear and nonlinear
regression models combining the possibility and necessity estimation formulation with the
principle of support vector machine (SVM). This proposed SVM is also based on QP
approach giving fairly diverse spread coefficients and integrates well both the property of
central tendency in least squares and the possibilistic property in fuzzy regression. However,
this is not a computationally expensive way. This SVM allows us to perform interval
nonlinear regression analysis by constructing an interval linear regression function in a high
dimensional feature space. In particular, SVM is a very attractive approach to model
nonlinear interval data. The proposed algorithm here is model-free method in the sense that
we do not have to assume the underlying model function for interval nonlinear regression
model with crisp inputs and interval output. This model-free method turns out to be a
promissing method which has been attempted to treat interval nonlinear regression model.

2. Interval Regression for Crisp Input-Interval Output

In this section, we need to briefly ook at how to get solutions for interval regression
models using QP approach proposed by Tanaka and Lee(1998). For a data set with crisp
inputs and interval outputs, we can consider two interval regression models, i.e., the
possibility and necessity models. In this section, we review the unified QP approach to
obtain the possibility and necessity models simultaneously. In this unified approach, we
assume for simplicity that the center coefficients of the possibility regression model and
necessity regression model are same.

Suppose that we are given training data {(x;, Y,), i=1, - ,n}, where z,=
(1,z,,--,x,,)" is the ith input vector, Y; = (y;,e;) is the corresponding interval output
that consists of a center y; and a radius e;. For this data set, the possibility and necessity
estimation models are denoted as

Yiz,) = A+ Agg + -+ Az, i = 1,1
Yo(z;) = Ape+ Apzy + -+ Ay, i = 1,-,n

where the interval coefficients A

; and A., are denoted as A; = (a;,c;) and
A.; = (a+;,c+;), respectively. The estimated interval ¥'(z;) by the possibility model

always includes the observed interval Y;, whereas the estimated interval Y.(z,) by the
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necessity model should be included in the observed interval Y. In fact, we can denote the
interval coefficients A: and A.; as
Ai = (ane+d;), Ay = (ay,¢)

which satisfies the condition A., € A;,i =0,1,---,m since ¢; and d; are assumed to be
positive. Therefore, by interval arithmetic the possibility model Y'(:z; ;) and the necessity
model Y.{xz,) can be written as

Y*(a:i) = (a'z,c'le;|+d'z,]), Ye(z;) = (a'z;c'lz;l)
Then, the objective function in the unified approach by QP can be assumed as the
following quadratic function:

MiNg cq J = dt[z |97i|-’L‘£|tjd + &(a'd +c'e)-

t=1

3. Quadratic Loss SVM for Interval Regression

In this section, we propose a new method to evaluate interval linear and nonlinear
regression models combining the possibility estimation formulation integrating the property
of central tendency with the principle of SVM. We first need to look at how to get
solutions for interval linear regression models by implementing the SVM approach. We
follow the way of constructing objective function in SVM regression. Then, the objective
function can be assumed as the following quadratic function:

. 1 n n N
min, . ¥ (al?+ lel®+1d1)+ ¥(Sw+ H65+1D)

subject to

d'lx,| <%,

yvi—a'x; <%, a'x;— y; <3y, i=1,n

a'x,* clxl + d'lx|zy,+e, a'x;,— c'lx]—dlx|<y,—e;i=1,+n
a'x,+ clxl<y,+e, a'x;,~ cllx;l=2y,—e;, i=1,,n.

Although it is possible to use two weight coefficients like Tanaka and Lee(1998), we use
one weight coefficient. Here, § |; represents spreads of the estimated outputs, and §,,, [

are slack variables representing upper and lower constraints on the outputs of the model.
Hence, we can construct a Lagrange function as follows:

L= 5 al®+lel?+1d19+ ¥+ (H+ Fai+ud)
— e diE )
— PauCym it atx) - Pahiy— aln+ )
- glﬂ;;i(a[xi.+ cllxl+ dilxl—y;—e;) — zla'gi(y,-—e[— a'x;+ c'lx)+ d'lx,l)
- ijla wlvite~a'x;— cllx;l) — z]la},»(a’x,»— cllx;l— v+ e;)

Here, a,;, a4, a%;,a,,0%;, a,,a}; are Lagrange multipliers. It follows from the saddle

point condition that the partial derivatives of L with respect to the primal variables
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(a, c,d,%;, %4, %%) have to vanish for optimality.

% =0— a= Zl(a 2 Ay X+ 2(‘1 3T A3)x;— 21((‘ K YPEF (3
AL—p o= Saytaiind = Bletai)lal @
oL _ <

8d—0—*c——2 Ix|+Z(03,+uJ,)lxl )
oL _ 1

agli—o gli Yali 6)
oL _ (0 = 1

at (2.1) 0 - g ¥ a5y V)]

Substituting (3)-(7) into (2) yields the dual optimization problem.

n
maximize{— % ( i;l(a gi—ay)lay—ay)xix;

n
+ 2 (‘13;“0'3[)(‘13;““3;)"2"; + > (ay—ay)(a 4i~u:1i)xtixi

ij=1 i=1

-

+2r,2n=1(0 ) (ay—ay)xix; _Zi,;zn:=1(a pi—ay) e —ai)xix;
_Zzil(u g—ai) (e —af)xix; + [JZ:]I(a aras)(ag+ras)lzlx)
¥ ’il(q4'+u4’)(u41+“4,)|x 1| — 2;\12';1((1 gt as)(a g+ ai)ixllx)
+ f.;ila e el =2 ,»Jzﬂ:zla Lo+ agj)lxil’lxj|) ®
+ 3 (aytai) ey tas)lndls !)_ BEEW
) -2% 21(12” - LC Z:} afitail)
* ‘Zﬂl (7m0 it Zn: (ag;—a%)y, — ,an(ﬂu_(l;i)yi
+ Z (ay+aide,— Z a“-i-uj“)ei]
subject to

Ay Qe a%20, £=2,3,4.
Solving (8) with above constraints determines the Lagrange multipliers, a,;, @ ,;, @%;.

Hence, if ¢lx|=0 and d'lx|=0, then the linear interval regression function is as
follows:
Y'(x) = (a'x, c'lx|+ d'|x|) (9)
Y.(x) = (a‘x, ¢'|x]) (10)
Next, we will consider nonlinear interval regression model. In contrast to linear interval
regression, there have been no articles on nonlinear interval regression. In this paper we

treat nonlinear interval regression, without assuming the underlying model function. In the
case where a linear regression function is inappropriate SVM makes algorithm nonlinear.

This could be achieved by simply preprocessing input patterns x; by a map &: R'—>E

into some feature space £ and then applying SVM regression algorithm. This is an
astonishingly straightforward way.
First notice that the only way in which the data appears in (8) is in the form of inner

products xfx;, |x;/'lx,]. The algorithm would only depend on the data through dot
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products in E, ie. on functions of the form K(x;, x;))=.0(x,)®(x;),
Klx],lx;)=02(x,)'®(l x,l). The well used kernels for regression problem are

given below.
— J-x—!l—_ - 2

K(x,y)=(z'y+1), K(x,y)=e >
Here, p and 0° are kernel parameters. In final, the nonlinear interval regression solution is
given by
z:: (ay;—a3)(ay—a})K(x,, x5)

- _L(
max1mlze{ 2 a2

i, =1

+ 3 ey @y a3 K(x, 5) + 3 (a=ai)(ay—ay) Kz, 7))

+2i$=:1(a i ay)ag—ay) K(x;, x;) —2 Z:I (ag—a3)(a—ay)K(x;, x))

=1

=2 Zn: (ag;—ag)ay—ai)K(x,, x;) + an (ag+ai)(ag+ai)KUxd, x,])

1 iy

—_

i

+ 3 (agtaid(ata) Klallx) =2 3 (aytai)(agrai)K(x ) Iz,
+ 3 aya KUz llx ) -2 3 aeg+ai) Kdxl 1z ) 12
+ B (agtat) g+ i) Klxl o)) - oo Sels
- 3o Bk~ 2o Bkt d
B @pmai)y i+ B (gmai)y— B (@u—eidy,
+ anl (agtajle,— Z‘_n,l (a4l+u2i)e,]
subject to

Q5 0., 0520, £=2,3,4.
Solving (12) with the above constraints determines the Lagrange multipliers, @ ;, @ ,;, @%;.

Therefore, the interval nonlinear regression function is given as follows:

V() = [ Blan=03) +(ay—a) = (e 4= ai)1K(x, %),

S0+ 2a g+ 05) = (8t a3 1K, 12D, ) 13
Y.(x) = ( ,ﬁlﬁam—aa)+(a3,~—ag,->—<a4,-—a;i)]1<<xi, x),
;Z‘:l[(aai+a§z)_(ﬂ4i+ a},-)]K(]x,l,lxI),) (14)
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