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Abstract

A weighted self-tuning robust regression estimator (WSTE) has the high breakdown point
for estimating regression parameters such as other well known high breakdown estimators. In
this paper, we propose to obtain standard quantities like confidence intervals, and it is found to

be superior to the other high breakdown regression estimators when a sample is contaminated.
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1 Introduction

A regression estimator is said to be robust if it is still reliable in the presence of outliers. Moreover,
a robust regression method can be evaluated by two concepts of robustness: local robustness and
global robustness (Hernandez and Yohai 2003). The local robustness of an estimator refers to its
stability as the fraction of outliers in the data tends to zero, whereas global robustness concerns
the stability of the estimator when a large fraction of outliers is included in the sample. Local
robustness can be measured by the influence function (Hampel 1974) which indicates how much an
estimator is influenced by a single outlying observation, while global robustness can be measured
by the breakdown point (Hampel 1971, Donoho and Huber 1983) which is the maximum fraction
of outliers that renders an estimator useless.

High breakdown regression estimators are developed to give the highest breakdown point 50%.
Indeed, 50% is the best that can be expected because it becomes impossible to distinguish between
the good and the bad parts of the sample. The estimators, Least Median of Squares (LMS) by Ham-
pel (1975), Least Trimmed Squares (LTS) by Rousseeuw (1984), and S-estimators by Rousseeuw
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and Yohai (1984), have the highest breakdown point of 50%. Other high breakdown regression
estimators included in this setup are 7-estimators (Yohai and Zamar 1988), R-estimators (Hdossjer
1994), GS-estimators such as the least quartile difference (LQD) and the least trimmed difference
regression estimator (LTD) (Croux, Rousseeuw and Hossjer 1994, Stromberg, Hossjer and Hawkins
2000) which are based on differences of residuals and indicated to be more efficient than other high
breakdown estimators.

By implication, although these high breakdown regression estimators have different criteria
with each others, they accommodate the best fitting cases chosen by their own criteria. Moreover,
computing the high breakdown estimators is notoriously difficult in large sample and even in small
sample for practically obtaining high breakdown regression estimates. To avoid this problem, high
breakdown estimators typically use only a subset of the data which is randomly selected by a
resampling technique. This resampling technique renders the high breakdown estimators that do
not have the permutation invariance. This invariance is another desired property for an estimator to
be invariant under any permutation of observations. The resampling causes a lower convergence rate
and a lower breakdown point than theoretically expected (Hawkins and Olive 2002). In contrast,
the weighted self-tuning robust regression estimator (WSTE) use resampling technique no more
even though it has the high breakdown point 50% such as other high breakdown estimators (Lee
2004).

In this paper, we propose the method in order to obtain standard quantities like t-value, confi-
dence intervals, and like this, and investigate the performance of WSTE in constructing confidence
intervals of regression coefficients while the presence of outliers. The proposed method is presented
in Section 2. Result of a simulation study carried out for evaluating its performance over other high

breakdown regression estimators are presented in Section 3.

2 The Weighted Self-Tuning Robust Regression Estimator

We consider the linear regression model given by
yizx:ﬁ"'ei) 1SZSTL1

where (3 is the p-dimensional parameter including an intercept parameter. The random sample
{xi,y:} are from a continuous distribution F' and the error € has a distribution F, with mean 0 and
a finite variance o2, which is independent with x;. Let ,fin be a trial high breakdown estimator. If
regressor coefficients 3, lead to a linear model fitting well with the data, residuals using 3,, are

small for the majority of the data while large for outliers. To find such a 3,,, we first define a

ny

collection of subsets of n observations as follows. Based on response variable y, let g, , §q,, and g,
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be the first quartile, the median, and the third quartile of y, respectively. Then define
Oo1 = {(%, i)|¥q: < ;5 <Fg2} and Ooz = {(x,y;)|¥a. < Y5 < Fg3}-

Next, based only on the ith independent variable, partition n observations into four quadrants. To

that end, set
n n
oo = | D yslle; 2 &) |/ | Y Iley 2 &
j=1 j=1

and
n

n
guo= | Y vydlziy <& | /| D Iz < 3]
j=1

=1
where Z; = 1/n 231:1 z;;. Then, for i = 1,--- ,p where p is the number of independent variables,
define

O = {(x5,95) | T > Eiand g5 2 Gu; }, Oz = {(%5,95) | i 2 T and g5 < Fu, )

Ois = {(x;,¥;) | Ti < Zi and y; > G, }, and Ois = {(x;,¥5) | Tij < Zs and y; < §i, },

where we set O;; = ¢ foralli=1,--- ,pand j =1,...,4 when any z;; or y; is infinite. Let O; be

the closure of the class {O;; : 1 < j <4} under the union operation, i.e.

4
O; = {01, ,044;001 U Osg,- -+ ,043U 0445051 U O3 U O3, -+ , 042U 03U Oi4;kL=JlOik}y

and C = 'L_’joo,l where Og = {Ogy, Oo2,001 U Opz}. Note that there are at most 14p + 4 non-empty
different Is—ets in C. Let K denote the number of sets in C having cardinality at least p + 2 and
further let Ey, Es3,-++ , FEr, K < 14p + 4 be an enumeration of these “thick” sets. We refer to an
E; as an elementary set fori =1,---,14p + 4.

Using the elementary sets, the following four steps precisely describe how to obtain an optimal
B,, and the WSTE.

Step 1 Obtain OLS estimate by from observations in Ey. With by as regressor coefficients cal-
culate for all n data points standardized residuals 7;(bi) = r;(bi)/s(bx) where r;(bs) =
y; —xtby, j=1,2,---,n and s(b;) = (0.6745) 'median(|r;(bs)|). Do this for each of the

reduced samples E;, Fy, -+, Ex and then obtain

A _ : 2 2
B, = arg mtn Z [Ti (b) — T; (bk)]+
175 (b )| <cr,ifi(bi)|<c1
where ¢; is a cut-off value, k = 1,2,..- | K, [z]+ = max(0,z). Here the summation is taken
over all 4, j = 1,2,--- ,n. Define O(3,) to be the observations satisfying li"'j(Bn)l < ¢ for

j=1y2v"' , 1L
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Step 2 Only using observations in O(8,,), calculate a preliminary self-tuning estimator (PSTE)
Tpstre(F,) satisfying

where .
A(r;) (1 P "‘12]+)
i) = +
Z;’:l Z::l [T? - Tk]
Step 3 Remove the observations with |7;(Tpsre(F,))| > ¢ for 5 = 1,2,--- ,n where ¢z < c;.

We call the removed observations temporary outliers. When no temporary outlier is detected
or the remaining number of observations is less than p + 2, the Tpgsrg(F,) in Step 2 is our

WSTE. Otherwise, denote the remaining observations by S,, where n; is the size of S,,,.

Step 4 Based only on S,,, construct new Ej’s and then repeat Step 1 and Step 2.

The estimate from Step 4 is the WSTE denoted by Tw srg(F,,). Observations with |7;(Twsre(F.))] >
cg for j =1,2,--- ,n are deemed to be outliers.

The basic principle of WSTE is to fit the majority of the data, after which outliers may be
identified as those points that lie far away from the fit, that is, the cases with large positive or
large negative residuals. Therefore, we can apply a weighted least squares analysis based on the
identification of the outliers following Rousseeuw and Leroy (1987) or construct a hybrid type
estimator with the initial estimates using this WSTE such as Yohai (1987), Simpson, Ruppert and
Carroll (1992), and Coakly and Hettmansperger (1993). Although it is well known that these one-
step estimators can improve the rate of the initial estimator, the performance of a one step estimator
when applied to an incosistenct high breakdown regression estimator to be an open question (Olive
2003). Therefore, we consider the weighted least squares based on the identification by the following
weights:

_Jr i F#] <3
w; = (1)

0  otherwise.
This means simply that case ¢ will be retained in the weighted least squares if its WSTE residual is
small to moderate, but disregarded if it is an outlier. (1) is the smooth resection rule by Rousseeuw

and Leroy (1987).

- 208 -



Dong-Hee Lee, YouSung Park, Kang-yong Kim

3 Comparisons

A simulation study is conducted to compute the empirical coverage probabilities of .confidence

intervals for the proposed estimate in Section 2. The multiple regression model
¥ = P12y + oo + -+ + Bsxsi + €,

where ¢ = 1,--. ,n, is considered. Simulations generate a fixed percentage of clean observations
and clean observations are generated as follows. Each values of the independent variables for the
clean observations are generated identically and independently from a normal distribution with a
mean p; = 7.5 and standard deviation of o, = 4.0. The response for the ith clean observation is
generated by (2) where all 8s are set to be 1 and ¢; is the random error distributed by N{(0,1).
We consider the sample size n = 50 and outlier percentages from 0% to 40% by increasing 10%.
After the clean observations are generated, the remainder of whole sample is filled with outliers.
Tij = Ficlean + 505 + N(0,02) and y; = Jejean + N(0, 1) where Jeiean is the sample mean of clean
y's. Thus, it describes bad leverage outlying observations located near the centroid of y,

Table (1) shows the coverage probabilities of 7 regression estimators at 1000 simulation runs.
Each cell indicates the mean of coverage probabilities of 5 regression coefficients. S and WSTE
estimators are nearly exact comparable to OLS when a sample has no outlier. Moreover, S estimator
shows the best performance while the sample is moderate in contamination level, but it is broken
down over 20%. LMS and LTS have the similar result comparable to their generalized estimators,
LQD and LTS. But LMS and LTS are better than LQD and LTS at 40% contamination level. On
the other hand, the WSTE does not manifest any of the drawbacks which were noted in other

estimators.

Table 1: Means of Coverage Probabilities of 95% and 99% Confidence Intervals

Nominal Estimators
Contamination

Level OLS LMS LTS S LQD LTD WSTE
0.0 95.1 73.7 63.9 93.5 73.9 62.6 924
0.1 81.1 74.2 94.1 85.3 76.4 93.2

95% 0.2 88.3 83.0 94.4 92.0 88.4 93.8
0.3 91.6 88.9 3.6 92.6 94.0 94.3
0.4 71.9 75.4 0.9 2.2 44.0 94.8
0.0 98.7 85.5 77.2 97.9 85.9 73.9 97.8
0.1 92.0 86.2 98.6 93.7 87.4 98.2

99% 0.2 95.5 92.5 98.6 97.6 95.4 98.4
0.3 97.7 96.4 9.8 97.0 98.9 98.9
0.4 77.5 81.4 2.9 6.8 3.6 98.7
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4 Discussion

The high breakdown regression estimators suffer from the computational problem. To overcome the
computational problem, a resampling technique is generally adapted. Because of resampling, they
are calculated using only partial observations and this may damage the robustness theoretically
expected. On the other hand, No computational problem arises in calculating the WSTE. This
is achieved by partitioning the observations into a finite number of subsets based on the means
of independent and dependent variables. Therefore, WSTE is found to be superior to other high
breakdown regression estimators in constructing confidence intervals of regression coeflicients in the

presence of outliers.
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