SPH

t. *. **

Numerical simulation of hypervelocity impacts on laminated composite plate targets using SPH method

Jaehoon Lee, Songwon Seo, Oakkey Min

Key Words:	Smoothed particle hydrodynamics(), Composite	laminate(
), Hypervelocity impacts(), Constitutive equation()

Abstract

This paper is concerned with numerical simulation of hypervelocity impacts(HVIs) of a projectile on laminated composite plate targets using SPH method. A one-parameter visco-plasticity model and damage model is used to describe the HVIs response of composite materials. The numerical simulation was carried out for a steel projectile striking to aluminum plate targets and for an aluminum projectile striking to laminated graphite/epoxy (Gr/Ep) composite plate targets. Through the numerical simulation, comparison with the HVIs response of isotropic materials and composite materials is discussed.

	1.		Chen[4]			
						SPH
				가		B/A
		フト		(fiber)	(ma	trix)
	·	(HVIs)	. B/A	1	Gr/Ep 가	
	가	,	Gr/Ep		가	가 가
(matrix	cracking), (delamination),	(fiber breakage), (fragmentation)	(macro composite , Campbell	model) Medina[7]	Sun[5]], Chen[6]	
		[1-3]				
, 	,		,	3D	가	SPH (Gr/Ep)
**					•	
E-1 TE	mail : minokey@y EL : (02)2123-2817	onsei.ac.kr FAX : (02)2123-4017	,			

2. 2.1 SPH 2.1.1 SPH SPH 가

.

,

,

(kernel function)

SPH (kernael approximation) 가 (particle approximation)

•

SPH

,

$$\frac{d\rho}{dt} = -\rho \frac{\partial U^{\alpha}}{\partial x^{\alpha}} \Rightarrow \frac{d\rho}{dt}_{i} = -\rho_{i} \sum_{j} m_{j} \frac{U^{\beta_{j}}}{\rho_{j}} W_{ij,\beta(i)}$$
(1)

$$\frac{dU^{\alpha}}{dt} = -\frac{1}{\rho} \frac{\partial \sigma^{\alpha\beta}}{\partial x^{\beta}} \Rightarrow$$
(2)

$$\frac{dU^{\alpha}}{dt}_{i} = -\sum_{j} m_{j} \left(\frac{\sigma_{i}^{\alpha\beta}}{\rho_{i}^{2}} + \frac{\sigma_{j}^{\alpha\beta}}{\rho_{j}^{2}} + \Pi_{ij} \right) W_{ij,\beta(i)}$$

$$E \qquad \sigma^{\alpha\beta} \ \partial U^{\alpha}$$

$$\frac{dE}{dt} = -\frac{\sigma^{\alpha\beta}}{\rho} \frac{\partial U^{\alpha}}{\partial x^{\beta}} \Rightarrow$$

$$\frac{dE}{dt}_{i} = -\sum_{j} m_{j} (U_{i}^{\alpha} - U_{j}^{\beta}) \left(\frac{\sigma_{i}^{\alpha\beta}}{\rho_{i}^{2}} + \frac{\Pi_{ij}}{2} \right) W_{ij,\beta(i)}$$

$$\rho , U^{\alpha} , E , t$$

$$, X , \sigma , \alpha, \beta$$
(3)

$$(\Pi_{ij})$$
 - ,
SPH .[8]

2.2
2.2.1 (Isotropic materials)
(2), (3)

$$P \qquad S^{\alpha\beta}$$

.
 $\sigma^{\alpha\beta} = P\delta^{\alpha\beta} - S^{\alpha\beta}$ (4)

 $\delta^{lphaeta}$ (Kronecker delta)

(Jaumann rate)

$$\dot{S}^{\alpha\beta} - S^{\alpha\gamma} \overline{\sigma}^{\beta\gamma} - S^{\gamma\beta} \overline{\sigma}^{\alpha\gamma} = 2G \left(\dot{\varepsilon}^{\alpha\beta} - \frac{1}{3} \delta^{\alpha\beta} \dot{\varepsilon}^{\gamma\gamma} \right)$$
(5)
$$\dot{\varepsilon}^{\alpha\beta} \overline{\sigma}^{\alpha\beta}$$

,

von Mises

$$S_{est}^{\alpha\beta} = S^{\alpha\beta} \left(\frac{\sigma_Y^2}{3J_2}\right)^{1/2}$$
(6)
$$S_{est}^{\alpha\beta} , J_2$$

2 (second invariant), σ_Y

2.2.2 (composite materials)

$$.[5]$$

$$2f(\sigma_{ij}) = a_{11}\sigma_{11}^{2} + a_{22}\sigma_{22}^{2} + a_{33}\sigma_{33}^{2} + 2a_{12}\sigma_{12}\sigma_{22}$$

$$+ 2a_{13}\sigma_{13}\sigma_{33} + 2a_{23}\sigma_{22}\sigma_{33} + 2a_{44}\sigma_{23}^{2}$$

$$+ 2a_{55}\sigma_{13}^{2} + 2a_{66}\sigma_{12}^{2}$$
(fiber direction)
(transversely isotropic) 7, ,

(transversely isotropic)

$$2f(\sigma_{ij}) = (\sigma_{22} - \sigma_{33})^2 + 4\sigma_{23}^2 + 2a_{66}(\sigma_{12}^2 + \sigma_{13}^2)$$
(8)

(total strain rates)

,

(elastic strain rates) (plastic 가 가 strain rates) . .

$$\dot{\varepsilon}_{ij} = \dot{\varepsilon}^e_{ij} + \dot{\varepsilon}^p_{ij} \tag{9}$$

$$\begin{bmatrix} \dot{\varepsilon}_{11}^{e} \\ \dot{\varepsilon}_{22}^{e} \\ \dot{\varepsilon}_{33}^{e} \\ \dot{\varepsilon}_{23}^{e} \\ \dot{\varepsilon}_{12}^{e} \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & 0 & 0 & 0 \\ S_{12} & S_{22} & S_{23} & 0 & 0 & 0 \\ S_{13} & S_{23} & S_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & S_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & S_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & S_{66} \end{bmatrix} \begin{bmatrix} \dot{\sigma}_{11} \\ \dot{\sigma}_{22} \\ \dot{\sigma}_{33} \\ \dot{\sigma}_{13} \\ \dot{\sigma}_{13} \\ \dot{\sigma}_{12} \end{bmatrix}$$
(10)
, 7 t
(associated flow rule) 7 t

,

.

$$\dot{\varepsilon}_{ij}^{p} = \dot{\lambda} \frac{\partial f}{\partial \sigma_{ij}} \tag{11}$$

.[10]

.

가

(19)

(8) . (12)
$$\begin{cases} \dot{\varepsilon}_{11}^{p} \\ \dot{\varepsilon}_{22}^{p} \\ \dot{\varepsilon}_{33}^{p} \\ \dot{\varepsilon}_{23}^{p} \\ \dot{\varepsilon}_{13}^{p} \\ \dot{\varepsilon}_{12}^{p} \\ \dot{\varepsilon}_{12}^{p} \\ \dot{\varepsilon}_{12}^{p} \\ \dot{\varepsilon}_{12}^{p} \\ \dot{\varepsilon}_{12}^{p} \\ \dot{\varepsilon}_{13}^{p} \\ \dot{\varepsilon}_{13}^{p} \\ \dot{\varepsilon}_{12}^{p} \\ \dot{\varepsilon}_{13}^{p} \\ \dot{\varepsilon}_{12}^{p} \\ \dot{\varepsilon}_{13}^{p} \\ \dot{\varepsilon}_{12}^{p} \\ \dot{\varepsilon}_{13}^{p} \\$$

(effective stress)

$$\overline{\sigma} = \sqrt{3f} = \left[\frac{3}{2}((\sigma_{22} - \sigma_{33})^2 + 4\sigma_{23}^2 + 2a_{66}(\sigma_{12}^2 + \sigma_{13}^2))\right]^{1/2}$$
(13)

.

가

$$\dot{W}_{P} = \overline{\sigma}\overline{\dot{\varepsilon}}^{P} = \sigma_{ij}\dot{\varepsilon}_{ij}^{P} = \left(\sigma_{ij}\frac{\partial f}{\partial\sigma_{ij}}\right)\dot{\lambda} = 2f\dot{\lambda}$$
(14)

(effective plastic strain rate)

$$\left(\overline{\dot{\varepsilon}}^{P}\right)^{2} = \frac{2}{3} \left[\frac{\left(\dot{\varepsilon}_{22}^{P} - \dot{\varepsilon}_{33}^{P}\right)^{2}}{4} + \frac{\left(\dot{\varepsilon}_{23}^{P}\right)^{2}}{4} + \frac{\left(\dot{\varepsilon}_{13}^{P}\right)^{2}}{2a_{66}} + \frac{\left(\dot{\varepsilon}_{12}^{P}\right)^{2}}{2a_{66}} \right]$$
(15)

.

.

$$\begin{aligned} \overline{\dot{\sigma}} &= \frac{1}{\overline{\sigma}} \bigg[\frac{3}{2} \Big[\big(\sigma_{22} - \sigma_{33} \big) \dot{\sigma}_{22} + \big(\sigma_{33} - \sigma_{22} \big) \dot{\sigma}_{33} \Big] \\ &+ 6 \sigma_{23} \dot{\sigma}_{23} + 3 a_{66} \big(\sigma_{13} \dot{\sigma}_{13} + \sigma_{12} \dot{\sigma}_{12} \big) \bigg] \end{aligned} \tag{16}$$

$$(14) \qquad (16) \qquad \dot{\lambda}$$

$$\dot{\lambda} = \frac{3}{2} \frac{\overline{\dot{\varepsilon}}^{P}}{\overline{\sigma}} = \frac{3}{2} \frac{\overline{\dot{\sigma}}}{H_{P}\overline{\sigma}}$$
(17)

 H_P (plastic modulus)

$$H_{P} = \frac{d\bar{\sigma}}{d\bar{\varepsilon}^{P}}$$
(18)

$$\overline{\varepsilon}^{P} = \chi \left(\overline{\dot{\varepsilon}}^{P}\right)^{m} \left(\overline{\sigma}\right)^{n}$$

 χ, m, n

$$H_{p} = \frac{1}{n\chi \left(\bar{\varepsilon}^{p}\right)^{m} (\bar{\sigma})^{n-1}}$$
(20)
(17)
(20)
 $\dot{\lambda}$
,
(11)
 $\dot{\lambda}$
,

$$\begin{vmatrix} \dot{\varepsilon}_{11} \\ \dot{\varepsilon}_{22} \\ \dot{\varepsilon}_{33} \\ \dot{\varepsilon}_{23} \\ \dot{\varepsilon}_{13} \\ \dot{\varepsilon}_{12} \end{vmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & 0 & 0 & 0 \\ S_{12} & S_{22}^{ep} & S_{23}^{ep} & S_{24}^{ep} & S_{25}^{ep} & S_{26}^{ep} \\ S_{13} & S_{23}^{ep} & S_{33}^{ep} & S_{35}^{ep} & S_{36}^{ep} \\ 0 & S_{24}^{ep} & S_{34}^{ep} & S_{45}^{ep} & S_{45}^{ep} \\ 0 & S_{25}^{ep} & S_{35}^{ep} & S_{55}^{ep} & S_{56}^{ep} \\ 0 & S_{26}^{ep} & S_{36}^{ep} & S_{46}^{ep} & S_{56}^{ep} & S_{66}^{ep} \\ \end{vmatrix} \begin{vmatrix} \dot{\sigma}_{11} \\ \dot{\sigma}_{22} \\ \dot{\sigma}_{33} \\ \dot{\sigma}_{23} \\ \dot{\sigma}_{13} \\ \dot{\sigma}_{12} \end{vmatrix}$$
(21)

$$S_{ij}^{ep} = S_{ij} + S_{ij}^{p} , \quad S_{ij}^{p} = \mu C^{i} C^{j}$$
$$\mu = \frac{9}{4} \frac{1}{\overline{\sigma}^{2}} \frac{1}{H_{p}}$$
$$C^{2} = -C^{3} = \sigma_{22} - \sigma_{33}, \quad C^{4} = 4\sigma_{23},$$
$$C^{5} = 2a_{66}\sigma_{13}, \quad C^{6} = 2a_{66}\sigma_{12}$$

2.3

C ep

(maximum stress criteria) , 0 σ_{xx} , $\sigma_{xx}, \sigma_{xy}, \sigma_{xz}$ 0 0 0 σ_{xx} . Table 1

.

Table 1 Gr/Ep composite failure thresholds

Stress orientation	GPa
Tensile strength, fiber direction	1.45
Compressive strength, fiber direction	1.45
Tensile strength, transverse direction	0.26
Compressive strength, transverse direction	1.03
In-plane shear strength	0.465
Shear strength in 22-33 plane	0.465

.[11]

. Fig.2 (c)

Table 2 Material properties of steel and al2024and constants for Mie-Gruneisen EOSsteel al2024and Gr/Ep.

Material	$c_0 (m/s)$	s	Γ_0	$ ho_0(kg/m^3)$	G(GPa)	$Y_0(MPa)$
steel	3600	1.90	1.70	7850	77	600
al2024	5330	1.34	2.00	2790	25	550
Gr/Ep	4690	1.57	0.87	1600		

Table 3 Material properties of Gr/Ep..

$\overline{E_1(\text{GPa})}$	139.0
$E_2 = E_3$ (GPa)	9.85
<i>G</i> ₁₂ (GPa)	5.25
$G_{13} = G_{23}$ (GPa)	3.8
$ u_{12} $	0.25
$\nu_{13} = \nu_{23}$	0.38
a_{66}	1.4
8.0µs	
3.2 Gr/Ep	
	Gr/Ep
	. steel 가
1000m/s	
	. steel -
Gr/Ep	
, EOS	Mie-Gruneisen .
	$\alpha = \beta = 2.5$, NPH 1.2
. steel	EOS
Table 2	. Gr/Ep
Table 3	Fig 3 (a)
2 0/18	
2.0µ3	
71	Eia 2
7	. Flg.3
(b) (c) $8.0\mu s$	
•	가
7	
•	

Fig 1. Analysis 3D model.

Fig.2 Simulated impact to aluminum plate with a steel ball.

Fig.3 Simulated impact to Gr/Ep composite plate with a steel ball.

4.

SPH

가

(1) CG Lamontage, GN Manuelpillai, EA Taylor, RC Tennyson, 1999, "Normal and Oblique hypervelocity impacts on carbon fibre/PEEK composites," *Int. J. Impact. Eng.*, Vol. 23(1), pp. 519~532.

- (2) RC Tennyson, CG Lamontage, 2000, "Hypervelocity impacts damage to composites", Composites A, Vol. 31(8), pp. 785~794.
- (3) WP Schonberg, 2000. "Protecting spacecraft against orbital debris impact damage using composite materials", Composites A, Vol. 31(8), pp. 869~878.
- (4) JK Chen, DF Medina, 1998, "The effects of projectile shape on laminated composite perforation", Compos. Sci. Technol., Vol. 58, pp. 1629~1639.
- (5) CT Sun, JL Chen, 1989, "A simple flow rule for characterizing nonlinear behavior of fiber composites", J. Compos. Mater., Vol. 23, pp. 1009~1020.
- (6) JK Chen, FA Allahdadi , TC Carney, 1997, "High-velocity impact of graphite/epoxy composite laminates", Compos. Sci. Technol., Vol 57, pp. 1369~1379.
- (7) MM Campbell, DF Medina, 1998, "A composite material visco-plastic model implemented in the MAGI smooth particle hydrodynamic code and its implications for impact damage prediction", Air Force Research Laboratory, AFRL-DE-PS-TR -1998 -1070.
- (8) L.D. Libersky, A.G. Petschek, T.C. Carney, J.R.

Hipp, and F.A. Allahdadi, 1993, "High Strain Lagrangian Hydrodynamics," *J. Comput. Phys.*, Vol. 109, pp. 67~75.

- (9) RF Gibson, 1994, Principles of composite material mechanics., McGraw-Hill.
- (10) V Srikanth, Thiruppukuzhi, CT Sun, 1998, " Testing and modeling high strain rate behavior of polymeric composites", Composites B, Vol. 29, pp. 535~546.
- (11) DF Medina, JK Chen, 2000, "Threedimensional simulations of impact induced damage in composite structures using the parallelized SPH method", Composites A, Vol. 31, pp. 853~860.