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Abstract 

A physically simple but mathematically cumbrous problem of rotating heavy chain with one fixed top 
point is studied. Nonlinear equation of its two-dimensional shapes of relative equilibrium is obtained and 
solved numerically. A linear case of small displacements is analyzed in terms of Bessel functions. The 
qualitative and quantitative behavior of the problem is discussed with the help of bifurcation diagram. 
Dynamics of the two-dimensional model near the equilibrium positions is studied with the help of simulation 
using the absolute nodal coordinate formulation (ANCF). The equilibriums are found instable, and the reason 
of instability is explained using a variational principle.  

1. 서 론 

The problem to be discussed here could probably 
have attracted many people’s attention if they ever 
twirled a chain or rope in similar way that cowboys did. 
That is why it is surprisingly that this very interesting 
problem has almost been not described in the literature 
before. We only could find paper[1] and similar work of 
the same authors[2] that also stated that, to their 
knowledge, there has been no solutions of this helicoseir 
problem (from the Greek for rotating rope). 

Our interest is to determine the exact shape of the 
helicoseir and the conditions under that they exist. The 
problem of determination of the shape of a continuous 
medium subjected to rotation and some force and 
constraint condition is, of course, not a new one and has 
its own history. For instance, the catenary problem[3]. 
The problems arising here often have a simple physical 
representation but surprisingly complicated equations. 
Such is the case of the helicoseir problem, which exact 

solution is unknown.. 
The studied phenomenon is a nonlinear mechanical 

system that is why we are especially interested in taking 
into account large displacements and choose the absolute 
nodal coordinate formulation[4] as the most proper in 
this case.  

This paper is devoted to the two-dimensional 
simulation of the helicoseir problem. The variants of full 
nonlinear configuration equation are discussed in 
section  2, and the results are compared with these from 
the preceding paper[2]. The dynamical formulation and 
simulation results of 2D model using absolute nodal 
coordinate formulation are in section 3 and 4, 
respectively. Conclusions concerning instability of the 
model and the reasons are in sections 5. 

2. Equations of a Helicoseeir in 2D Case 

The object is a rotating inextensible rope or chain, 
which is fixed at the top point and twirled around a 
vertical axis under uniform gravitational field. Now we 
consider a two-dimensional problem, i.e. we assume that 
the shape of the helicoseir is a flat curve in plane xy, 
which is rotated around x axis,. 

Let us consider the relative equilibrium of the part AB 
rotating around x axis. We should account inertia forces 
in addition to gravity forces, in accordance with 
d’Alembert principle. One of the equations of this quasi-
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equilibrium is the momentum equation 
 

0)()( inertactive =+ ∑∑
∈∈ ABk

kA
ABk

kA MM FF , (1)

 
which states that total sum of moments MA of gravity and 
inertia forces w.r.t. point A is zero. 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 1 A chain rotating along the vertical axis 
 
 
The part AB begins at point A given by arc coordinate 

s with the origin in point O and end at point B when the 
arc coordinate is equal to the total length ℓ of the chain. 

Consider an infinitesimal element C(σ) of part AB 
marked by bold strip in. Let x(σ) and y(σ) be its Cartesian 
coordinates, where σ is an auxiliary arc coordinate 
running from s to length ℓ. These coordinates can be 
calculated as integrals 
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with an unknown function φ(σ) of slope angle. This 
function defines the shape of our chain. 

Using the introduced values, momentum equation (1) 
assumes the form 
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where µ is the linear density of the chain material. 

In the latter equation, the values x(s) and y(s) can be 

taken out of integrals because the integration is assumed 
over σ: 
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To avoid integrals let us note that s

s
−=∫ l

l

σd  and 

differentiate the latter equation with respect to s, 
applying a rule of derivating integrals with respect to 
their limits: 
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where we introduce the derivatives sxsx dd)( =′  and 

sysy dd)( =′ . Simplifying, the latter equation 
becomes 
 

0d )( )()()( 2 =′−′− ∫
l

l
s

ysxsysg σσω . (5)

 
Dividing by )( sxg ′  we note that 

)(tan)()( ssxsy ϕ=′′  (see definitions (2) and (3)) 
and introduce a new unknown function 

 
)(tan)( sst ϕ=  (6)

 
as well as a new parameter 
 

g2ωα =l . (7)
 
In paper [2], the authors used similar dimensionless 

frequency parameter gl2ωα = , so we can establish 
the following relationship between them: 

 
ll αα = . (8)

 
Then, after dividing by )( sxg ′ , equation (5) 

becomes 
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and can be differentiated again: 
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0)( )( =+−′− sytts ll α . (9)
 
The final differentiation turns the equation into 
 

0)(sin2 )( =+′−′′− stts ϕαll , 
 
or, substituting sine in terms of tangent: 

0
1
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2
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t
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α
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Second-order differential equation (10) is the 

simplest known form of configuration equation 
describing the equilibrium shape of helicoseir. Using 
substitutions ς=− sl , )()( ςτ=st  it can be 
shortened little again and represented in an equivalent 
form: 0)1(2 212 =++′+′′ −τταττς l  or even 

0)1()( 2122 =++′′ −τςτατς l , but it is more 
convenient for us to use argument s instead of ς. 

 

3. Formulation and Simulation with ANCF 

3.1 Absolute Nodal Coordinates 
Since we do not know any analytical solution for 

dynamical and even for statical shapes of the helicoseir 
in nonlinear case, we try in this section to simulate its 
motion using a finite-element approach called absolute 
nodal coordinate formulation (ANCF). 

The literature devoted to implementation of the 
ANCF for two-dimensional beams is numerous papers 
[5-15]. In our case of helicoseir, which is considered as a 
thin heavy beam, the most convenient abstraction is 
Euler-Bernoulli beam model. 

The current implementation proposed below repeats 
most details published in paper[8]. However it has some 
special features. The first is that the helicoseir has no 
bending stiffness and only longitudinal forces appear. 
The second is the presence of centrifugal inertia forces 
due to rotation of the coordinate system. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Two-dimensional Euler-Bernoulli beam element 
using ANCF 

A finite element of a 2D Euler-Bernoulli beam is 

shown in Fig. 2 . Its middle line is parameterized by 
value p = 0…l, where l is the initial length. Vector e of its 
absolute nodal coordinates contains position vectors e1, 
e3 of the end points and tangent slope vectors e2, e4 at 
these points: 
 

TT
4

T
3

T
2

T
1 },,,{ eeeee = . (11)

 
Note that the components of vectors ek are not 

supposed small and tangent vectors e2, e4 may have non-
unit length. 

The position of an arbitrary point of the element 
centerline can be found as 
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where the beam shape functions are introduced: 
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3.2 EOM and Mass matrix 
Equations of motion of the beam element can be 

obtained from Lagrange equations 
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with the kinetic energy ∫=
l

pT
0

T
2
1 drr &&µ  (µ is the 

linear density in kg/m), the strain energy U and the 
virtual work δW of external gravity and centrifugal 
forces, see below.  

Taking into account relation (12), we find that the 
equations assume the matrix form[8] 
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is the mass matrix represented in a block form, 
I = diag(1,1) is identity matrix. The generalized gravity 

1e
3e

O x

y
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Qgr and centrifugal inertia forces Qcf due to rotation of 
the non-inertial reference frame are introduced in section 
3.3, while the generalized elastic forces are briefly 
reviewed in section 3.4. 

3.3 Generalized Forces 
Consider a 2D beam finite element in the coordinate 
frame xy, which is rotating around axis x as shown in Fig. 
3. This fact results in the explicit arising of centrifugal 
inertia forces applied to the FE, which have not been 
published in the literature before. That is why we start 
with the thorough introducing more usual generalized 
gravity forces and after that turn to the inertia forces. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig. 3 Gravity and centrifugal forces applied to a FE 
 
Gravity force applied to an infinitesimal particle with 

mass dm is iif pggm ddd gr µ== , where dp is 
length of the particle and i = {1, 0}T is the unit vector of 
axis Ox. Then we calculate the virtual work of this 
gravity force and intergrate it over the beam FE: 
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Here we use relation (12) as well as notation 

∫=
l

ii ppss
0

d)(v
 for the integration of shape functions 

si. 
Now, the generalized forces are calculated as 

gradients: ieQ gsW iii µv== δδ grgr , and full vector 
corresponding to gravity forces is 
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Similar calculations can be done for the elementary 

centrifugal force 
 

jjf pyym ddd 22cf µωω == , 
 

where j = {0, 1}T is the unit vector of axis Oy. The 
component y is the 2nd component of the radius-vector r 
of the beam particle and can be calculated as [8] 
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where (ek)2 denotes the 2nd component of the vector ek. 
The latter vectors are parts of vector of nodal coordinates 
(11). If e is treated as a vector containing scalar values 
then T

821 },,,{ eee K=e . It is evidently then that 

kk e22)( =e  in formula (14). 
Virtual work of inertia forces takes the form 
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where Mik are scalar components of mass matrix, and 
generalized forces are 
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The full vector of generalized centrifugal forces is 

calculated by formula 
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using the definition of the mass matrix. 
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3.4 Strain energy 
The vector of generalized elastic forces Qe

 = ∂U/∂e is 
the most cumbrous one due to complexity of the strain 
energy U. We assume the helicoseir to be a chain 
(without bending stiffness) that is why its energy is that 
of longitudinal deformation only: 

 

∫=
l

pEAU
0

2 d
2
1 ε  

 
with the longitudinal deformation ε. Longitudinal 
stiffness EA is supposed constant within the beam 
element. 

Longitudinal elastic forces are gradient vectors of the 
corresponding strain energy U: 
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This expression contains the longitudinal deformation 
 

)1(
2
111 TT −′′≈−′′=−′= rrrrrε , (16)

 
where prime denotes derivative w.r.t. arc parameter p. In 
paper [8], it was shown that the latter formula represents 
Green’s non-linear strain-displacement relationships[16] 
in the 1-dimentional case. 

The longitudinal deformation (16) and its gradients 
can be expressed in terms of shape functions and nodal 
coordinates (12) as follows: 
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Direct substitution of expressions (17) and (18) into 

(15) leads to elastic forces and the Jacobian matrix of 
elastic forces were explained in paper[8].  

4. Simulation Results 

Due to absence of analytical solution for dynamical 
shapes of the helicoseir, we used absolute nodal 
coordinate formulation implemented in the program 
package Universal Mechanism(www.umlab.ru) for 
numerical dynamic analysis of the model. 

We used the following parameters of the helicoseir: 
length ℓ = 1 m, gravity acceleration g = 9.81 m/s2, angular 
velocity of rotation: ω = 12 rad/s (α = 14.7) for the second 
form and ω = 20 rad/s (α = 40.8) for the third form. 

We used a high value of Young modulus E = 1010 Pa 

in finite-element models in order to approximate an 
inextensible chain assumed in theoretical investigations 
in section 2. Density µ and geometrical parameters of the 
cross section are not significant and can take arbitrary 
values. 

Damping forces were simulated using simple 
Rayleigh model[16]. 

 
eMQ &γ=damp , 

 
where M is the mass matrix, γ is the damping ratio, 
which numerical value was set to 10 to provide high 
dissipation of energy. 

 
 

 
 

Fig. 4 Instability of the 2nd mode in 2D 
(ω = 12 rad/s, α = 14.7) 

 
 

 
Fig. 5 Instability of the 3rd mode in 2D 

(ω = 20 rad/s, α = 40.8) 
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Initial configurations of the helicoseir were calculated 
numerically as described in section 2. Initial velocities 
were set to 0. The sequential positions of the helicoseir 
during its motion are represented in Fig. 4 and Fig. 5. 
The figures show instability of both 2nd and 3rd modes: 
because the initial positions obtained from numerical 
approximate solution are not exact equilibrium positions, 
the helicoseir runs quickly away from these to a position 
corresponding to the 1st mode at given frequency 
parameter α. Thus, it can be shown that the numerical 
simulation proves instability of all higher equilibrium 
modes except the 1st one. 

5. 결 론 

We considered a helicoseir problem, which is 
phenomenologically easy-to-implement but represented 
by surprisingly complicated nonlinear equations of 
relative equilibrium. We studied the preceding paper by 
Silverman at al., redeveloped and simplified their 
equations in two-dimensional case as well as the 
boundary conditions. This allowed us to obtain the 
bifurcation diagram of this problem. 

We also studied the stability of the equilibrium 
configurations of the two-dimensional model with the 
help of simulation using the absolute nodal coordinate 
formulation; we found that all higher modes of the 
equilibrium except the first one are instable. This means 
that the helicoseir in reality has no relative equilibrium 
positions and its shape is three-dimensional; its motion, 
probably, looks like self-excited oscillations. 

In the future, we intend to study full three-
dimensional model of the helicoseir. 
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