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Abstract: This article provides the connection between feedback stabilization and interpolation conditions for

n-D linear systems (n > 1). In addition to internal stability, if one demands performance as a design goal, then

there results an n-D matrix Nevanlinna-Pick interpolation problem. Application of recent work on Nevanlinna-Pick

interpolation on the polydisk yields a solution of the problem for the 2-D case. The same analysis applies in the n-D

case (n > 2), but leads to solutions which are contractive in a norm (the “Schur-Agler norm”) somewhat stronger

than the H∞ norm. This is an analogous version of the connection between the standard H∞ control problem and

an interpolation problem of Nevanlinna-Pick type in the classical 1-D linear time-invariant systems.
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1. Introduction
It is well know that for the case of classical 1-D lin-

ear time-invariant systems, the H∞ control problem

can be solved via either state-space analysis in the

time domain, or interpolation theory in the transform

(frequency) domain. In the latter approach, one goes

through coprime factorization to get the Q-parameter;

with Q as the new design parameter rather than the

controller K, one arrives at a model matching problem.

Let F be the performance function, which is affine in

Q. Then, with F as the design parameter rather than

Q, one has an interpolation problem for F . If one can

solve for F in an interpolation problem, then Q and fi-

nally K, a desired controller, can be solved. A criterion

for internal stability can be expressed directly in terms

of F : K is internally stabilizing for the closed loop sys-

tem whenever F is stable and satisfies the appropriate

interpolation conditions. Incorporation of a tolerance

level on the performance function then leads to an in-

terpolation problem of Nevanlinna-Pick type. (see [15]

for more details)

We here extend these results to the case of multidimen-

sional or n-D linear systems where the time-axis is an

integer lattice rather than “time” in the classical sys-

tem. Z. Lin studied the (output) feedback stabilization

problem for n-D systems (see [17], [18], [19], [20]), and

obtained an analogue of the Youla parametrization Q

of the set of all stabilizing controllers. In his work,

however, Lin did not take the next step of seeking to

find a stabilizing controller which optimizes some per-

formance function (i.e., the H∞-control problem). To

the best of our knowledge, the H∞ control problems

in the frequency domain setting have been attacked for

the first time in [8] for the output feedback n-D linear

system (n ≥ 2).

The author was financially supported by a grant from the faculty of

Engineering, Naresuan University, Phitsanulok, 65000, Thailand.

2. Notation and Preliminaries
In this article, we let R denote the field of real num-

bers; R[z] = R[z1, . . . , zd] the polynomial ring over R

in d indeterminants (z1, . . . , zd), all of which are com-

plex variables, and R(z) = R(z1, . . . , zd), the field of

rational functions which is equal to the quotient field

of R[z]. We denote by Rs(z) the subset of R(z) con-

sisting of elements of r(z) ∈ R(z) which are ana-

lytic and uniformly bounded on the open unit poly-

disk D
d = {z= (z1, . . . , zd) : |zj | < 1} (�2-gain sta-

ble), i.e. Rs(z)= {r(z) ∈ R(z) : supz∈D
d |r(z)| < ∞}.

We let Rss(z) denote the set of all real rational func-

tions r(z) having a representation r(z)= n(z)
d(z)

with

n(z) and d(z) factor-coprime polynomials such that

d(z) has no zeros in the closed unit polydisk cl(Dd) =

{z = (z1, . . . , zd) : |zj | ≤ 1} —see Definition 2 of [17].

In the 1-D case (d = 1), we have Rss(z) = Rs(z) but

in general we have only the inclusion Rss(z) ⊂ Rs(z)

due to the possible presence of nonessential singular-

ities of the second kind on the boundary ∂D
d of the

polydisk D
d (see [24] and the references therein). In

addition, a number of authors work with the notion of

bounded-input-bounded-output (BIBO) stable (whereby

r(z) =
∑

n∈Z
d
+

anzn with
∑

n∈Z
d
+
|an| < ∞), but we

shall not work with this latter notion here.

We let R
m×l(z) denote the set of m × l matrices with

entries in R(z) (i.e., entries are rational functions);

R
m×l
s (z) the set of m× l matrices with entries in Rs(z)

(i.e., entries are �2-gain stable real rational functions),

and R
m×l
ss (z) the set of m × l matrices with entries in

Rss(z) (i.e., entries are structurally stable real rational

functions). The d-D polynomial is said to be stable if

it has no zeros in cl(Dd). As we use d rather than n for

the number of variables, we shall refer to multivariable

systems as d-D rather than n-D systems. Thus a poly-

nomial fraction r(z) = n(z)
d(z)

with stable denominator

d(z) gives rise to a structurally stable rational function
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r(z).

Throughout this and the succeeding sections, we shall

take “stable” to mean “�2-gain stable”. Thus a given

rational matrix function X being stable now means that

all its matrix entries in Rs(z) (holomorphic and uni-

formly bounded on D
d).

For f a (scalar-, vector- or matrix-valued) function

which is holomorphic at a point z0 = (z0
1 , . . . , z0

d) ∈ C
d,

the d dimensional Complex Euclidean space, and j =

(j1, . . . , jd) a d-tuple of nonnegative integers, we denote

simply by
∂|j|f
∂zj

(z) the higher order partial derivative

∂|j|f
∂zj

(z) =
∂j1+···+jdf

∂zj1
1 · · · ∂z

jd
d

(z1, . . . , zd)

of f at a point z = (z1, . . . , zd) of holomorphicity in C
d.

Finally, for f a holomorphic function on D
d, we denote

by Z(f) the zero variety (or zero set) of f

Z(f) = {z ∈ D
d : f(z) = 0}.

Any subset V ′ of a variety V of the form V ′ = V \ A

where A is a subvariety of V of lower dimension is said

to be a generic subset of V (see [23]).

3. Equivalence of H∞ Control, Model
Matching and Interpolation Problem

This article applies the results of Lin (see [18], [19],

[20]) to provide the connection between the H∞ con-

trol problem in the so-called 1 block case and the multi-

variable Nevanlinna-Pick interpolation problem under

assumption that the plant P admits a doubly coprime

factorization (DCF). Under this assumption, one can

reformulate the H∞ control problem into the model

matching problem via the Youla parametrization Q.

Suppose now that we arrive at the model matching

problem stated as follows: Given stable rational ma-

trix functions T1, T2, and T3 of compatible sizes, find

the stable Q so as to achieve

min
Q

‖T1 − T2QT3‖ (1)

where the norm is the supremum norm over D
d.

Here T1, T2 and T3 are all stable rational matrix func-

tion in z= (z1, . . . , zd) of the appropriate sizes, say,

T1 ∈ R
l×m
s (z), T2 ∈ R

l×l
s (z), and T3 ∈ R

m×m
s (z).

We shall focus on the so-called regular 1-block case

(see [15]), i.e., we shall assume that T2 and T3 are in-

vertible in R
l×l(z) and R

m×m(z) respectively with in-

verses T−1
2 and T−1

3 (not necessarily stable) existing

and uniformly bounded on the distinguished boundary

T
d = {z = (z1, . . . , zd) : |zj | = 1 for j = 1, . . . , d} of the

polydisk.

The performance function F is given by

F = T1 − T2QT3, where Q ∈ R
l×m(z) (2)

Since T1, T2, T3 are all stable, if Q ∈ R
l×m
s (z), then F is

also stable. Conversely, if F ∈ R
l×m
s (z), then one can

backsolve for Q:

Q = T−1
2 (T1 − F )T−1

3 (3)

Since all quantities on the right hand side are bounded

on the distinguished boundary T
d, it follows that Q is

bounded on T
d; by the maximum modulus theorem, it

then follows that Q is stable once it is guaranteed that

Q is holomorphic on D
d. Since T−1

2 and T−1
3 may or

may not be stable, holomorphicity of F on D
d does not

guarantee holomorphicity of Q on D
d in general, unless

some additional interpolation conditions are imposed

on F (see Theorem 2). Thus we see that stability for

the closed loop system is equivalent to stability of the

performance function F together with holomorphicity

of the rational matrix function Q given by (3). In case

the Model Matching Problem arises from the sensitiv-

ity minimization problem for an output feedback con-

figuration, then l = m and we must also impose the

well-posedness condition that det F not vanish identi-

cally.

In this section, for convenience, we shall drop the re-

quirement that Q and F be real and rational; these con-

straints can always be reincorporated at a later stage.

With these relaxations, from the discussion above we

see that the stability question, formulated with the per-

formance function F taken as the free parameter, re-

duces to: characterize those l × m-matrix valued func-

tions F (subject also to the well-posedness constraint

det F not identically equal to 0) for which (1) F is holo-

morphic and uniformly bounded on the polydisk D
d, and

(2) the function Q given by (3) is holomorphic on D
d.

Theorem 1 (see [8],[9]). Suppose that we are given

an irreducible polynomial g(z) in z = (z1, . . . , zd) and

that k is a given positive integer. Then a necessary

and sufficient condition for a scalar-valued holomorphic

function f on the polydisk D
d to have the form

f(z) = g(z)kϕ(z); z ∈ D
d (4)

for some scalar-valued function ϕ holomorphic on D
d

is that f satisfies the interpolation conditions

∂|j|f
∂zj

∣∣∣∣
Z(g)

= 0 for |j| = 0, 1, . . . , k − 1 (5)

on a generic subset of Z(g).

Remark. In case g(z) = z1, the interpolation conditions

(5) can be collapsed to

∂jf

∂zj
1

∣∣∣∣
Z(g)

= 0 for j = 0, 1, . . . , k − 1. (6)

Indeed, the vanishing of partial derivatives involving

the other variables z2, . . . , zd along Z(g) = {z ∈
D

d : z1 = 0} is automatic from the vanishing of f along
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Z(g). More generally, one could do a change of coor-

dinates z = (z1, . . . , zd) �→ λ = (λ1, . . . , λd) in such a

way that λ1(z) = g(z). Then, with respect to these

new local coordinates, the interpolation conditions (5)

can be reduced to

∂jf

∂λj
1

∣∣∣∣
λ : λ1=0

= 0 for j = 0, 1, . . . , k − 1.

This is how the criterion for (4) is expressed in [13]. In

the context here such a change of variables is not so use-

ful as it would destroy the rationality of the functions

in the interpolation data set.

We now explain the type of interpolation problem to

which the model matching problem can be converted in

the 1-block case. For u = 1, . . . , η, assume that we are

given distinct irreducible (scalar) polynomials qu with

zero variety Z(qu) having nontrivial intersection with

D
d, meromorphic matrix functions Gu and G̃u (of com-

patible sizes for the interpolation conditions to follow

to make sense) with polar divisor not including Z(qu),

and positive integers ku. For v = 1, . . . , µ assume that

similarly we are given distinct irreducible polynomials

sv together with meromorphic matrix functions Hv and

H̃v (of compatible sizes) with polar divisor not includ-

ing Z(sv), and positive integers �v. For each pair of

indices (u, v) for which qu = sv =: hu,v, assume that

we are given an additional matrix function Ruv mero-

morphic on a neighborhood of each point of Z(hu,v).

The whole aggregate

D = {qu, Gu, G̃u, ku; sv, Hv, H̃v, �v; Ruv} (7)

we call a 1-block interpolation data set.

We say that an l × m matrix-valued function F holo-

morphic on D
d satisfies the interpolation conditions as-

sociated with D (denoted by F ∈ I(D)) if{
∂|i|

∂zi
Gu(z)F (z)

}∣∣∣∣
Z(qu)

=

{
∂|i|

∂zi
G̃u(z)

}∣∣∣∣
Z(qu)

generically on Z(qu), for u = 1, . . . , η

and |i| = 0, 1, . . . , ku − 1, (8){
∂|j|

∂zj
F (z)Hv(z)

}∣∣∣∣
Z(sv)

=

{
∂|j|

∂zj
H̃v(z)

}∣∣∣∣
Z(sv)

generically on Z(sv), for v = 1, . . . , µ

and |j| = 0, 1, . . . , �v − 1, and (9){
∂|l|

∂zl
Gu(z)F (z)Hv(z)

}∣∣∣∣
Z(hu,v)

=

{
∂|l|

∂zl
Ru,v(z)

}∣∣∣∣
Z(hu,v)

generically on Z(hu,v) for all pairs of indices (u, v)

with qu = sv and for |l| = 0, 1, . . . , ku + �v − 1 (10)

Given T1, T2 and T3 (of respective sizes l × m, l × l

and m × m, say) as in the 1-block case of the model

matching problem, we associate an interpolation data

set D as follows. Write the l × l rational matrix val-

ued function T−1
2 (z) as T−1

2 (z) =

[
pij

qij
(z)

]
i,j=1,...,l

,

and consider the set of unstable entries of T−1
2 , say{

pia,ja

qia,ja

(z)

}
for a = 1, . . . , α. Let q(z) be the least com-

mon multiple of {qi1,j1(z), . . . , qiα,jα(z)} . Also write

the m × m rational matrix valued function T−1
3 (z)

as T−1
3 (z) =

[
rij

sij
(z)

]
i,j=1,...,m

, and consider the set

of unstable entries of T−1
3 , say

{
rib,jb

sib,jb

(z)

}
for b =

1, . . . , β. Let s(z) be the least common multiple of{
si1,j1(z), . . . , siβ ,jβ (z)

}
. Suppose now that q(z) and

s(z) can be factored into irreducible polynomials, say

q(z) = qk1
1 (z) · · · qkη

η (z), where ki > 0 for i = 1, . . . , η,

and s(z) = s�1
1 (z) · · · s�µ

µ (z), where �i > 0 for i =

1, . . . , µ, respectively. Then for each u ∈ {1, . . . , η},
T−1

2 (z) =
Gu

qku
u

(z), where Gu(z) is a meromorphic ma-

trix function in D
d with polar divisor not including

Z(qu), and qku
u is an unstable irreducible polynomial

with multiplicity ku. In addition we set G̃u(z) =

Gu(z)T1(z), so G̃u(z) is also meromorphic with polar

divisor not including Z(qu).

Analogously, for each v ∈ {1, . . . , µ}, T−1
3 (z) =

Hv

s�v
v

(z),

where Hv(z) is a meromorphic matrix function on D
d

with polar divisor not including Z(sv). Set H̃v(z) =

T1(z)Hv(z), so H̃v(z) is meromorphic with polar di-

visor not including Z(sv). In addition, if q and s

have some common factors, say qu = sv for some

pair of indices u and v, set hu,v = qu = sv and

Ru,v(z) = Gu(z)T1(z)Hv(z), so Ru,v is meromorphic

with polar divisor not including Z(hu,v). In this way

we have formed an interpolation data set D as in (7).

When D is formed in this way from T1, T2, T3, let us

write D = DT1,T2,T3 .

Now we are ready to state the main theorem, which

gives the connection between the model matching and

interpolation problems.

Theorem 2. Let T1, T2, T3 be the data set for a 1-block

model matching problem, and let DT1,T2,T3 be the asso-

ciated interpolation data set as delineated in the previ-

ous paragraph. Then a given function F holomorphic

on D
d has the model matching form F = T1 − T2QT3

for a stable Q if and only if F satisfies the interpolation

conditions (8), (9) and (10) associated with the data set

DT1,T2,T3 (i.e., F ∈ I(DT1,T2,T3)).

Remark. If one loosens the 1-block assumption on

(T1, T2, T3), the model matching form for F is equiv-

alent to interpolation conditions for F on subvarieties

of other codimensions, including the possibility of in-

terpolation conditions at isolated points, or, at the op-

posite extreme, interpolation conditions on the whole

of D
d. For the 1-D case (d = 1), there are only the

two possibilities of codimension equal to 1 or to 0, i.e.

interpolation at isolated points or interpolation along

the whole unit disk–see e.g. [10] and [11] for a thor-

ough treatment.
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4. The Nevanlinna-Pick Interpolation
Problem on the Polydisk

We consider the following d-D version of the bitangen-

tial Nevanlinna-Pick interpolation problem (for the 1-D

version, see e.g. [7], [14]): given an interpolation data

set D as in (7), find an l × m matrix-valued function

F holomorphic on D
d satisfying the interpolation con-

ditions (8), (9), (10) (F ∈ I(D)) for which in addition

sup
z∈D

d

‖F (z)‖ ≤ 1. (11)

The class of all matrix functions holomorphic on D
d and

satisfying the norm constraint (11) is often called the

Schur class; we denote the class of l×m matrix-valued

such functions by Sd(Cm, Cl). For d > 2, it turns out

that the norm constraint (11) is not so convenient to

work with. A closely related class of functions is what

we shall call the Schur-Agler class (see [1], [2], [12]),

denoted by SAd(Cm, Cl), namely, the class of all l×m

matrix-valued functions F holomorphic on D
d such that

sup{‖F (T1, . . . , Td)‖} ≤ 1. (12)

where H is a Hilbert space, Tj ∈ L(H), ‖Tj‖ < 1, and

TiTj = TjTi for i, j = 1, . . . , d. Here, for T1, . . . , Td

equal to strict contraction operators on a Hilbert space

H, one can define F (T1, . . . , Td) as an operator from

⊕m
j=1Hj to ⊕l

k=1Hk by

F (T1, . . . , Td)

=

(
1

2πi

)d ∫
T

d

[
(I − ζ1T1)

−1 · · · (I − ζdTd)−1]⊗F (ζ) dζ.

(13)

It is known that SAd(Cm, Cl) = Sd(Cm, Cl) for d =

1, 2, but only SAd(Cm, Cl) ⊂
�=

Sd(Cm, Cl) for d >

2. The bitangential Nevanlinna-Pick problem for the

class SAd(Cm, Cl) can be stated as follows: given

an interpolation data set D as in (7), find an l × m

matrix-valued function F holomorphic on D
d satisfy-

ing the interpolation conditions (8), (9), (10) which

in addition satisfies (12), i.e., we seek F ∈ I(D) ∩
SAd(Cm, Cl). By the remarks above, we see that the

Schur-Agler-modified bitangential Nevanlinna-Pick in-

terpolation problem (I(D) with (12)) is exactly the

same as the d-D bitangential Nevanlinna-Pick interpo-

lation problem given above (I(D) with (11)) in case

d = 1, 2, while, for d > 2, a necessary and sufficient con-

dition for solving the Schur-Agler variant gives only a

sufficient condition for solving the original version. We

shall next discuss results concerning the Schur-Agler

version of the bitangential Nevanlinna-Pick interpola-

tion problem.

For the statement of the next result we need one more

piece of terminology. For Ω any set and P a function

defined on Ω×Ω with value P (ω′, ω) at (ω′, ω) ∈ Ω×Ω

equal to an operator from the Hilbert space Kω to the

Hilbert space Kω′ , we say that P is a positive kernel if

for any choice of N points, say ω1, . . . , ωN ∈ Ω, and of

N vectors x1, . . . , xN with xi ∈ Kωi for i = 1, . . . , N

(where N is any finite number)

N∑
i,j=1

〈P (ωi, ωj)xj , xi〉Kωi
≥ 0

Such objects are closely connected with the theory of

reproducing kernel Hilbert spaces (see e.g. [14]). It

is well known that an equivalent condition for a given

P (ω′, ω) as above to be a positive kernel is that there

be an auxiliary Hilbert space H and an operator-valued

function ω → T (ω) on Ω, where the value T (ω) at

ω ∈ Ω is an operator from H into Kω, such that we

have the factorization

P (ω′, ω) = T (ω′)T (ω)∗.

More concretely, one can view an operator-valued func-

tion P (·, ·) as above as an infinite block-matrix, with

rows and columns indexed by the (possibly infinite) set

Ω. The condition that P be a positive kernel can then

be viewed as an infinite analogue of a positive-definite

matrix.

In case no qu is also an sv (so the third set of interpo-

lation conditions (10) is vacuous) and the multiplicities

ku and �v are all equal to 1, we have the following

solution of the Schur-Agler variant of the bitangential

interpolation problem from [5] (see also [12] for the case

of interpolation along finitely many points).

Theorem 3. Suppose we are given an interpolation

data set (7) such that, for all u = 1, . . . , η and v =

1, . . . , µ, qu �= sv (so the interpolation condition (10)

is vacuous), ku = 1 and �v = 1. Then there exists

a matrix-valued function holomorphic on D
d satisfying

the interpolation conditions (8) and (9) together with

the norm constraint (11) if and only if there exists d

positive kernels P1, . . . , Pd, where

Pj(ω
′, ω) : Ω×Ω →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
l×l, if ω′ ∈ Z(qu′), ω ∈ Z(qu)

for some u′, u;

C
l×m, if ω′ ∈ Z(qu′), ω ∈ Z(sv)

for some u′, v;

C
m×m, if ω′ ∈ Z(sv′), ω ∈ Z(sv)

for some v′, v;

satisfying the equation

d∑
k=1

[
Mk(ω′)∗Pk(ω′, ω)Mk(ω) − Nk(ω′)∗Pk(ω′, ω)Nk(ω)

]
= X(ω′)∗X(ω) − Y (ω′)∗Y (ω) (14)

for all ω′, ω ∈ Ω, where

Ω :=

(
η⋃

u=1

Z(qu)

)⋃( µ⋃
v=1

Z(sv)

)
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and where

Mk(ω) = Il, Nk(ω) = ωkIl,

X(ω) = Gu(ω)∗, Y (ω) = G̃u(ω)∗ (15)

in case ω ∈ Z(qu) for some u = 1, . . . , η,

Mk(ω) = ωkIm, Nk(ω) = Im,

X(ω) = H̃v(ω), Y (ω) = Hv(ω) (16)

in case ω ∈ Z(sv) for some v = 1, . . . , µ.

Remark. Were it the case that the set Ω in Theo-

rem 3 were finite, then the problem of solving (14) for d

positive-definite matrices P1, . . . , Pd would be a partic-

ular instance of a Linear Matrix Inequality (LMI) for

which much research and software is now well devel-

oped (see [6], [16]). There does not appear to be much

experience developed with infinite LMIs such as (14).

Remark. The scalar case of the interpolation prob-

lem with solution sought in Schur-Agler class and with

the interpolation nodal varieties all taken to have di-

mension zero, is simply: given interpolation nodes

z1, . . . , zn ∈ D
d and interpolation values w1, . . . , wn ∈

C, find a scalar function F ∈ SAd satisfying the inter-

polation conditions

F (zi) = wi for i = 1, . . . , n. (17)

The original result of Agler [1] on this problem is:

A necessary and sufficient condition for the existence

of a scalar function F in SAd satisfying the inter-

polation conditions (17) is that there exist d positive-

semidefinite n × n matrices P1, . . . , Pd so that

1 − wiwj =
d∑

k=1

(1 − zi
kz

j
k)P i,j

k for i, j = 1, . . . , n. (18)

This result was extended to the matrix-valued setting

(with the interpolation nodal varieties still assumed to

be zero-dimensional and without consideration of two-

sided interpolation conditions) in [4], [12]. A contour

integral formulation which incorporated higher-order

interpolation conditions but still at isolated points was

solved in [3].

Remark. The other approach for solving the model

matching problem is an opreator-theoretic formulation

which lends itself to a solution via the recent poly-

disk Commutant Lifting Theorem. Note that the exis-

tence of the Q-parameter in this approach reduces the

problem to solving a Linear Operator Inequality (LOI).

Complete details appear in [9], [21].

5. Solution of the d-D H∞ Control Problem
We now return to the H∞ control problem: given a d-

D plant P , design a stabilizing controller K for which

the performance function F = F (K) achieves ‖F‖ ≤ 1.

The solution procedure of the H∞ control problem is

given in the following theorem.

Theorem 4. Assume that P admits a DCF over Rs(z),

P = NrD
−1
r = D−1

l Nl, satisfying the Bézout identity

and that Q is the Youla parametrization. Then the H∞

control problem can be converted to the model match-

ing problem (1) with the performance function F as in

(2), where T2 and T3 are square and invertible with in-

verses uniformly bounded on the distinguished boundary

T
d of the polydisk D

d. Form the interpolation data set

DT1,T2,T3 from T1, T2, T3 as in Theorem 2, and as-

sume that no qu is also a sv as in the hypotheses of

Theorem 3. Then a sufficient (and also necessary if

d ≤ 2) condition for the H∞-control problem to have a

(not necessarily well-posed) solution is that the Schur-

Agler bitangential Nevanlinna-Pick interpolation prob-

lem (8)-(10) with (12) with data set DT1,T2,T3 have a so-

lution, or equivalently, that the infinite LMI (14) have

a positive solution P (ω′, ω).

In this case there are explicit realization formulas for

solutions F of the Schur-Agler bitangential Nevanlinna-

Pick interpolation problem (see [5]) which meets the

H∞ performance criterion ‖F‖ ≤ 1.

Remark. The assumption in the Theorem 4 is the exis-

tence of a DCF over Rs(z) for P . While the existence of

such a DCF in general appears not to have been proved,

Z. Lin conjectured in [18] that such a DCF (even over

Rss(z)) always does exist.

Recently, it has been reported in the work of K. Mori

[22] that the model matching problem we consider here

is equivalent to the standard H∞ control problem in

the multidimensional linear system. He applies the

coordinate-free approach to achieve the result without

using the coprime factorization of plants.

6. Open Problems and Discussions
While the procedure described therein does solve the

H∞-control problem, there are a number of remaining

issues which are directions for future research.

1. The case where the third coupled interpolation con-

dition (10) appears (i.e., the case where qu = sv for

some pair of indices (u, v)) remains mysterious.

2. At least to our knowledge, there is missing a reliable

analysis on how to solve an infinite LMI; some analysis

of whether solutions of a sequence of approximating

LMIs can be used to approximate a true solution of

the infinite LMI would be helpful. Simple numerical

experiments on small-size examples done by the author

suggest that one cannot expect to find the solution of

the full infinite LMI by approximating with solutions

of finite sub-LMIs.

3. It would be of interest to remove the assumption

that T2 and T3 are invertible, and to handle the case of

the general configuration of the standard H∞ problem.
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