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1. Introduction

A review of the extent of physicad and economical damage from liquefaction during recent earthquakes
(Loma Prieta in 1989, Northridge in 1994, Kobe in 1995, and Turkey and Taiwan in 1999) shows that
disastrous earthquakes occur on a regular basis and liquefaction of saturated granular soils is recognized as
one of the major causes of ground failure during earthquakes. To address concerns with soil deformation and
ground failure caused by earthquake motion, dynamics of fluid saturated porous media have been employed
to analyze the liquefaction of saturated soils. Based on Biot's pioneering work (1941, 1956a, 1956b, and
1962), various theories have been proposed to explain the mechanical behavior of saturated soils under
dynamic loads and methodologies have been suggested for the analysis of liquefaction. However, due to the
complexity of problem in dynamics of fluid saturated soils, practical solutions are possible only through
numerical approaches at the present time. Therefore, this study is focused on the development of
computational procedures to produce numerical solutions incorporating dynamic theory for fluid saturated soils.
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2. Theory of Dynamics of Saturated Soils

Extending Biot's theory of fluid saturated porous media, Hiremath (1987, 1996) proposed the theory of dynamics for
saturated soils was proposed. This theory uses a converted coordinate system. The motion of the solid is determined
with respect to a fixed reference volume which the motion of the fluid is characterized in relation to the solid. Therefore
the fluid itself does not have a reference state. The definitions, relations and formulae for the use of converted

coordinates in the mechanics of continua can be referred in Hiremath (1987, 1996).

2.1 Equilibrium Equations

The momentum balance equations by Hiremath (1987, 1996) in terms of the bulk stress, #; and the partial pressure, 7

was given as

1-- 2) ..
Tt Pg; :p( )ui +p( )wl. 2.1)

@y @) o
;P Tg =P +Dlwi_uiJ 2.2)

where superposed dots denote time derivatives, “i and Wi are the components of the displacement vectors

associated with the solid and the fluid respectively, and the coefficient, D is a viscous coupling term. The density terms

p" and p*® are related to the density of the solid (p s ) and the fluid (p r) respectively by means of the porosity n

p" =01-n)p, 2.3)

p? =np, 2.4)
Subtracting (2.1) from (2.2), an equilibrium equation in terms of the partial solid stress is obtained as
i +pVg, = pWii, —DlWi —u; J 2.5)
For small deformation, the kinematical relations are given as
e =l[u U, ]
AN SV (2.6)

&= Wi (2.7)

where € and ¢ are components of the symmetric strain tensor of solid and fluid, respectively.
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2.2 Constitutive relations

The constitutive equations for linear elastic fluid saturated soil are given as

T; = Ekl,-jek, +aM[od, e, + 5]51']

(2.8)
T =Mloe, +&] (2.9)
The inverse relationships are
ey = Cyyy 8y, +amdy, )
E=r 1 verc, 5.6, |~ac, 8.c
Y; ikl Ok Ojf ikl O Tij (2.10)

Here E ik and Ci are components of the elasticity and compliance tensor of the elastic solid, respectively. a is the

compressibility of the solid and M is that of the fluid.

2.3 Boundary and Initial Conditions

The displacement boundary conditions are

u;(x,t)=1u,;(x,1) on S, %[0,00)
w; (x,2) =W; (x,2) on S, x[0,0) @2.11)
and the traction boundary conditions are
w,(x,t)n; =7 ,;(x,t) on S, x[0,0)
T (x,0n; =T,(x,0) =T, (x,1) o S, X[0,00) 2.12)
The initial conditions for the problems are
u(x,0) = uy(x)
1(x,0) =11y (x)
w(x,0) = w; (x)
w(x,0) =Wy (x) 2.13)
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The equations (2.1) through (2.13) completely define the initial boundary value problem of small deformation of fluid

saturated soil.

3. Integral Form of the Field Equation

For development of variational principles, the field equations need to be rewritten in the form of convolution product
so that the time derivatives are avoided. This can be done through applying Laplace transform and taking inverse after
appropriate rearrangement.

3.1 Dynamic Equilibrium

Laplace transformation of (2.1) and (2.2) followed by inversion gives

M @,, —
t*Tij,j-l_F;'_p Mi —p Wi —0 (31)
(2 —
t*n"]+Gl—p Wi _D[Wl —ul]—() (32)
where
F, =% pb; + p“[u, (0) -1, (0)]+ p[w, (0)—1- W, (0)] (3.3)
G; =t*p b, +p?[w, (0)+1-4; (0)] + D[t w; (0)—¢-u; (0)] 3.4)
The symbol “*” denotes the convolution product defined as

fre=[f@gu-oar 69

3.2 Constitutive Equations

Equations (2.8) to (2.10) must be restated so that the constitutive relations show the dependence of quantities

appearing in the equilibrium equations upon corresponding kinematical quantities in them.

t*1, =t*E e, +t*aM5l.j(oc O0yey +6)
ES — +%
t*r=t*M(ad;e; +&)

t*e; =1*Cy, (1, —Omdy)

1L, >
t*¥& = t*n(ﬁﬂx Cu0u6,; )—t*aCijk,&k,rij 5o
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4. Variational Principles for Dynamics of Fluid Saturated Soils

4.1 Field Equations

The integral form of field equations (3.1) through (3.6) is can be written in a self-adjoint matrix form;

Alu)= f on RX[0,%0) @.1)
Here,
[ p P, 0 ~L 0 0 |
P, PolfH+1%(1/k) 9 0 0
om
4=|0 0 0 0 0 —t*
om
L 0 0 0 —t* 0
0 0 0 —t* P t*aMSij @2)
| 0 0 —t* 0 t*aMo, t*M |
where
L= l * 5lmi+5kmi
2 ok ol 4.3)
P=t*(Ey, +a’M8;6,) @.4)
[u, ] [ F ]
wm Gm
T y 0
u: =
T, 0
Cu , and 0 (4.5)
| ¢ ] | 0

Elements of matrix, 4 satisfy self-adjointness. The operators on the diagonal are symmetric and the off-diagonal
operators constitute adjoint pairs with respect to the bilinear mapping. Consistent boundary conditions for the equations

(4.1) are

—tFun; =—t*i;n; on S, %[0, 00)
—tEwn, =—tEw;n, on S, x[0,%0)
tmm, =t* 7% n, on §3%X[0,0)
[*T;n; :t*fi on S, x[0,%0) (4.6)
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Consistent form of the internal jump discontinuities is

—tx(un,)=—t%(g)n;, oo S, X[0,20)
—tk(wn,)=-t*g, on S,, X[0,20)
t*(mn,)=t*g,n, on S, X[0,00)
tx(T;n;)=t*g,n, on S, X[0,0) 4.7)

Here, surface 11585585 and Sy are embedded in the interior of R . Operators in the self-adjoint operator matrix

equation (4.1) have the following relationships;

<l*ui,j’TU>R <t*” Ty, /> "L<t*”f”f’7ff>s1 - <t*u"’T"fnf>S4
e m,) Ty ) (s @m)) (48)
<t*w,,7r > <t*w”, > +<z"“wl~ni,7r>s2 +<z"“wi,72?ni>s3

H{e*wny) ) g+ (% () (49)

In (4.8) and (4.9), the < > > r can be evaluated as the sum of quantities evaluated over subregions of R such that all

the surfaces S1i>52:>53:>S4i are contained in the union of the boundaries of these subregions.
4.2 A General Variational Principle

For the operator equation (4.1), the governing function following (A.16) is defined as;

P 1
Q(u):<pu[au,'>R+2<p2W,'au[>R_<t*Tij’j,ui>R+<(72+1*%)W“wj>R
(), (7, m), 2 Em) ),
2<t*el],‘L’ > <t*(El.j,d+0¢2M5ij5k,)ekl,el.j>R +2<t*0¢M5ijel.j, >R+<t*M§,§>R

=2, F ), =2w.G,), _< Tyt * (u; = 2u,)n, > (7,6 (w; = 2w, )

Si

+<wl.,t*(7r—2n')ni> <u ¥ (T j—2T)> <T, t*((u;n;)'-2(g, lnj>

= (7t * (W) =285)) g+ (Wit * ((m,)-283m;)) +<“ LF((Tym; ) 2g4n,~)>s4 (4.10)
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The Gateaux differential of this function along ¥ = {L_’i Wi T, T8 s } is;

AVQ(M)=<L_£,-,pu,~ +p,w; —f*Tij,j _2Fi>R +<“an_‘f + P, W, _t*fij,j>R

<wl,p2u +( e )w t*n’)i—2Gi> +<wl,p2u +( +1*— )w —t*T >
f x f

R
—(morw, —t*E) +(marw, o+ E) (Tt~ e ) (T, 1Y)
(T, +1* (Ey, +0°M8,6,)e, +aM8,5)

(et *T, +1* (B + 0’ M5,6,)e, +aMS,E )
+(E t* 1 aMBye, +1*ME) +(E~*T+t*oMS, e, +1*ME)

- <‘L'_l.j,t* (u;n; - 2;2,.nj)>s1 - <rij,t*LT,.nj>S1
— (Tt (winy = 20n,)) ¢ — (Tt * W)
= (Wiut * (n, = 278 n,)) ¢ = (wi t * 7Ty )

—<1,Tl.,t*(rijnj —2]:,.)>S4 —<1,t,.,t*1:l.jnj>s4
(ot * i) =2 )i ) ¢ = (Tt *@ny)')

— (T 1* (win)=2gy)), = (7.t *(Wimy) s +<Wl~,f *(mn,)-2g3m;)) 5 + (Wit *(Tn,)')

(i1 (@, )-2(ga)m; ) +(u,.1*(z, j)>s4l_

@.11)

Using equation (4.8) and (4.9), the gateaux differential can be rewritten as;

Ay Q) =2(i;, pu; + pyw, =17, = F,) =T 1% w, —1*E) +2(z, . t*u,  —t*e ,]>R

1 U)

U’

—2(7 et wy, —t*E) + 2Tk, —t*e]> —2< &, *T,y+t*(E,-jk/+052M5g5k;)€k;+0€M5g~5>R
+2<§_,—t*7r+t*aM5,dek,+t*M§>R— <,,,t*(u —u,n,-)>s1
—2(m, 1% (wn, —Wl”z)>s - 2{w;,t* (nn, —nlnl)>s —2< i, t* (Tyn J_Ti)>s4
=2{Tt* () ~(g0)in; ) ¢ = 2AT* (i )Y~(82)), + 20 () ~g3m),

+ 2<1,7i,t * ((T,jnj)'—(é'4)ﬂi>S4 (4.12)
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The Gateaux differential vanishes if and only if all the field equations along with the boundary conditions and the

jump conditions are satisfied because of linearity and non-degeneracy of bilinear mapping. Hence, vanishing of Ay Q(u)

for all V€ W implies satisfaction of (4.1), (4.7), and (4.8).
5. Summary

A numerical procedure to produce computational solutions incorporating Hiremath’s dynamic theory for saturated soils
is developed. In the theory, the motion of the solid is described with respect to its reference configuration but the motion
of the fluid is described as relative to the solid. To transform the coupled initial-boundary value problem of wave
equations into an equivalent variational problem, the field equations are re-written in the form of convolution product so
that the time derivatives are avoided. The set of fluid variables are regarded as a multiple in the admissible space whose
elements are defined in the spatial region. A solution of the mixed problem is an admissible state of the field variables,
which satisfies the filed equation, the initial conditions and the boundary conditions to the problem. Extensions of this
study are applicable for analyzing multi-phase systems such as coupled problems with the simultaneous presence of
water and air in which air pressure plays important role or that of water and oil for the treatment of oil reservoirs. The

extensions can be done with the allowing the field equations of motion to contain two different fluids.
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APPENDIX

MATHEMATICS

A.1 Boundary Value Problem

The linear vector space W consisting of all admissible states is referred to as the product space

W:VVIXW2X .................. xXW (A1)

where i is an subspace whose elements represent the admissible state for an specific field variable, u. Consider the

boundary vale problem given as
A(”): S on Rx [0,)
C(u)=g on OR x [0,%0) (A2)

where R is an open connected region of interest, dR is the boundary of R, and A, C are linear operator matrices. The

field operator 4 and the boundary operator C are bounded and defined such that
AW, >V,
C:Wy =V (A3)

Vi, Var are linear vector spaces defined on the regions indicated by the subscripts and Wz, Wr are subsets in Vi, Vor,

respectively. Throughout, 4 and C are assumed to be linear so that

Alow + Bv)=ad(u) + BA(V) u,ve W,
Clow + Bv)=0oC(u) + BC(v) u,ve Wy, (Ad)
where @0 are arbitrary scalars. Solution of boundary value problem implies determination of ¥ € W for given

S €Vr and €€ Var subject to the satisfaction of equation (A.1) = (A.4).

A.2 Bilinear Mapping
A bilinear mapping B:W xV — S, where W.V.S are linear vector spaces, for given WE W, VeV, ig
defined as a function to assign an element in S corresponding to an ordered pair (W, V). B is said to be bilinear if
Blow, + Bwy,v)=0B(w;,v) + BB(w,,) (A.5)
B(w.a; + Bv, )= eB(w, ) + BB(w.v,) (A.6)
where O, B are scalars. The notation can be used as

Br(w,v)= <w, v>R (A7)

B is said to be non-degenerate if

(w, V>R =0 we W itandonlyif v="0 (A.8)

For W=V, B is symmetric if
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<Wa ">R =<v, W>R (A.9)

A.3 Self-Adjoint Operator
Let A:V — W be an operator on the linear vector space V' defined on spatial region R . Operator 4" is said

to be adjoint of A with respect to a bilinear mapping < > > g WXW = S if

<w, Av>R = <v, A*W>R + Dy, (v, W) (A.10)

forall W€ W and ve V. Here, Dar (v, w) represents quantities associated with the boundary 0R of R. If A= A",

then A is said to be self-adjoint. In particular, a self-adjoint operator 4 on V' is symmetric with respect to the bilinear

mapping if V' =W and

(w, 4v) = (v, 4w) (A.11)

A. 4 Gateaux Differential of a Function

Considering 7 and S as linear vector spaces, the Gateaux differential of a continuous function " :V — § is

defined as

.1
Ay Fu)= IEEOII[F(” + W) = F(u)] (A.12)

provided the limit exists. V is referred to as the ‘path’ and A isascalar. For 4sV€V u+veV . Equation (A.12)

can be equivalently written as

d
AVF(“)—EF(”“Mh:o (A.13)

A.5 Basic Variational Principles

For the boundary value problem given by (A.1) with homogeneous boundary condition, Mikhlin (1965)

showed the functional, €2(#) to be a minimum value for the unique solution Yo with self-adjoint, positive definite

operator A ,
Q(u) = (Au,u) , —2u, f), (A.14)

where < ’ >R denotes inner product over the separable space of square functions. The Yo that minimizes the

functional (A.14) is the solution of the problem (A.1). Taking Gateaux differential of (A.14),
AVQ(u): %irrolikA(u + Av,u+ )w) - 2<u + /lv,f> - <Au,u> + 2<u,f>]
= <Au,v> + <Av,u> - 2<v,f>

=2(v,du—f)=0 (A.15)

In (A.15), the linearity and self-adjointness of A with respect to the bilinear mapping and the symmetry of

the bilinear mapping are assumed. The Gateaux differential vanishes at the solution %o such that Auy = f =0 For the
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vanishing of the Gateaux differential at ¥ = % to imply Auy—f = 0, the bilinear mapping has to be into the real line
and the operator must be positive. However, in general, it is only necessary to use vanishing of the Gateaux differential

as equivalent to (A.1) being satisfied. The governing function for the operator equation (A.2) can be defined as

Q:<“iaAij“j_Zfi>R+<”i’Cij“j_2gi>aR (A.16)

A.6 Consistent Boundary and Initial Discontinuity

Sandhu (1976) pointed out that appropriate boundary terms should be included in the governing function even
if they are homogeneous. This is important for approximation procedures such as the finite element method, where the
functions of limited smoothness are used. The boundary operators must be in a form consistent with the field operator.
Considering the boundary value problem of multi-variables given (A.5) and (A.6), Sandhu (1976) defined consistency
of boundary operators with the field operators to be the property;

DBR(ui’uj):<vj’ZCijuj> _2<uf’cl'f'vi>ak i=1.2
J 249

aR F; R ’n (A.17)

To find an approximation to the exact solution by the finite element method, the function space with limited
smoothness over the entire domain is sometimes used. In order to properly handle this limited smoothness problem in

the variational formulation, Sandhu (1976) introduced internal discontinuity conditions in the form;
Clu)=g on 9R (A.18)

where a prime denotes the internal jump discontinuity along element boundary aRi embedded in the region R . Sandhu

and salaam (1975a) and Sandhu (1975b) showed that this condition can be included explicitly in the governing function.
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