04-4-3 ## CGMMV Resistant Watermelon Rootstock and Environmental Risk Assessment Sang Mi Park¹*, Jung Suk Lee¹, Min Jeong Seong¹, Sang Lyul Han¹, Yoon Sup Shin¹, Nam Han Her¹, Jaong Ha Lee¹, Ki Hyun Ryu², Mi Yeon Lee², Sang Kyu Park³, Mi Ja Seo³, Soon Chun Jeong³, Whan Mook Kim³, Seung Gyun Yang¹ and Chee Hark Harn¹ ¹Biotechnology Center, Nong Woo Bio Co., Ltd., Jeongdan, Ganam, Yeoju, Gyeonggi, Korea; ²Dept. of Envionmental and Life Science, Seoul Womans University, Seoul, Korea; ³KRIBB, Yuseong, Daejeon, Korea ## Objectives: To study the environmental assessment of transgenic watermelons ## Material and Methods: - 1. Material: T2 and T3 generation of transgenic watermelon rootstock - 2. Methods: Transgenic watermelon rootstocks that were resistant to CGMMV. ## Results and Discussion: There was no significant difference in horticultural characteristics between transgenic plants and non-transgenic plants. Also, the *CGMMV-CP* DNA and coat protein in the rootstock did not transfer to scion suggesting that the watermelon rootstock would not necessarily be tested for the health risk assessment. Fig 1. When grafted, CGMMV-CP DNA and protein in rootstock were not transferred to the non-GM watermelon (scion). ^{*} Corresponding author: Chee Hark Harn, 031-883-7055, chharn @ nongwoobio.co.kr