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RHC for Nonlinear backlash system control
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Abstract -We present a receding horizon control
[RHC] algorithm for compensation of backlash at the
input of a stable linear system under control rate
constraints. The problem is posed as a receding
horizon optimal control [RHOptC] problem for a
piecewise affine [PWA] system by modelling the
backlash nonlinearity as a PWA system with a state
space partition consisting of three regions. The RHC
problem involves solving, at each step, 3" quadratic
programmes[QP], where N is the optimization horizon.
This strategy leads, at the cost of some performance
degradation, to much smaller computational load since
a feasible rather than optimal solution has to be
obtained at each step.

1. Introduction

Backlash is a common nonlinearity that limits
control performance in many industrial applications,
Notably mechanical and hydraulic systems. According
to the survey paper Nordin and Gutman [1], Few
control innovations aimed at this problem have been
presented since the early strategies based on
describing function analysis [2]. A novel scheme was
introduced in Tao and Kokotovic [3], Tao and
Kokotovi'c [4] based on adaptive inversion of the
backlash nonlinearity. Other nonlinear techniques such
as dynamic inversion using neural networks and
backstepping have also recently been proposed [5].
More recently, the idea of using the model predictive
control {MPC] or receding horizon control suggested
in Zabiri and Samyudia [6]. The proposed MPC
controller incorporates an inverse model of the
backlash function and logic variables are introduced
that permit the use of mixed integer quadratic
programming for the computations. The resulting
system falls into the general class of mixed logical
dynamical [MLD] systems introduced by Bemporad
and Morari [7]). MLD systems have been shown to be
equivalent to piecewise ane [PWA] systems in
Bemporad et al. [8]. RHC of PWA systems is a
subject of cwrent research and several algorithms
have been proposed in recent literature [9,10]. A key
issue in controlling these systems is the inherent
computational complexity of controller synthesis and
analysis [11]. In this paper we consider backlash

compensation under the RHC framework. By
modelling the backlash nonlinearity as a PWA system
with three regions, the receding horizon control [RHC]
algorithm with horizon N involves the solution of 3
quadratic programmes[QP] [12]. To circumvent the
complexity issue, we did solve these QPs. The
remainder of the paper proceeds as follows. In Section
2 we formulate the MPC problem for backlash
compensation under rate constraints. In Section 3 we
provide simulations results and finally conclusions are
given in Section 4.

2. The receding horizon control problem

We consider the following model of a linear discrete
time system with a backlash nonlinearity at the input:

Ek-f-l = "151" +Be. £ R®, o € B, (1

v = Bltg-1,uz). ur € R (2}
The backlash nonlinearity is given by
Bliorom)=
ni(ug ~ € i mlug — 6 <o
Ut if tpoy +md & mup < ey +mr

miug — ) of miug — ) 2 v,

IR
where m > 0, r > 0 and < 0. Figure 1 shows its
characteristic. We assume that the eigenvalues of A
in (1) are inside the unit circle. The backlash function
(3) can be represented as a PWA system with state
zk = vk.1 and dynamics given by

Tpar = Ao+ Bag + G 4)

vp= O+ Do + 5, ("

if (ueopie B 2 {ta, 2Y e L + o £ W)
{6)

for i = 1, 2, 3, where

Ai=0, By =m. Gy = —mi.

Li=m Jy=-11W =mf
Aa=1.B3=0,Gy =0,

La=m[t - l]jg Ja=1[-1 1]T, Wa =mfr - i]1
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Fig. 1. Backlash characteristic.

A3 =0,By=m, G3 = —mr,
Ly=—-m. J3=1 W) = —mr,
and G = Ai Di= Bi, Ei= Gifori=1 2 3

We now define xk zx ¢, and combine (1) and (4).(6)
into a single nonlinear (PWA) equation xk+1 = f(xk,
uk). As the base for the RHC design, we pose, at
time k and for the current state xx = x and the
previous input ukl = u, the following finite-horizon
optimisation problem:

Vi (z u) £ minVy (25, 1), (7}
subject to:
‘Tj-i-l =f(3‘}‘,lt§) fOl‘ j:o,...,hN,—'l, (8)
Iy = I, {9}
lusg —ujy] LA for j=0,.... N~1, (10}
Uy = U, {11}
[10...0]ey = 0. (12}
where
‘\""l
Unlay.y) 20k Py + Z (27Qx; +ujRu;),
3=t
(13)

00 x ‘
P= [0 p}. P=A"PA+qQ. {14}

Problem (7).{14) is the minimisation of the quadratic
objective function (13).(14) for the PWA system (8)
under rate constraints (10) and a terminal state
constraint (12). Its solution can be found by solving
3N QPs, which correspond to all the possibilities (u;,
zi) e Rifori=123andj;=01,.. N.1 Some
simplifications are possible in certain cases. For
example, if the rate limitd > 0 is greater than the
backlash “deadzone” r-/. then we can impose the
condition that (uj, zj)¢ R2 for j = 0,1, .. ,N - 1,
resulting in only 2% QP to solve. Also, if we impose

the condition (UN.1, zN.I) ¢ R2, which we assume,
then the terminal state constraint (12) takes the form

B {é‘ if (uy—1.2n-1) € Ry,
UN-1 =

. 15
roif (uyoginor) € R 1%

Equation (15) can be substituted in (7).(14) to obtain
QPs having N-1 decision variables. Let Nyp<= 3nx be
the number of QPs to solve, Each of the QPs has the
form

win w " Hu+ 20" (Fr+a)+ b (16)

subject to:
Lu+J [Z‘] < 1, (17

where u = [u, . . ., un-2lt € RN.2, and HF, 3, b, L,
J and W change with each of the Ng possibilities.
The vector a and the scalar b are independent of u,
but a depends on un-; and b on X and un-1. Note
that b does not affect the minimiser of (16).(17) but
it affects the optimal value and hence has to be
considered in the evaluation.

Once the Ngp QPs of the form (16).(17) have been
solved, the optimal solution to problem (7).(14) is
computed as the minimum of the QPs. Let the

minimiser be W = [“iifn“? Tl Then the
MPC strategy applies the first element of this vector,
that is, w = o ° . Time is then stepped forward and
the whole procedure is repeated at the next time
instant. The configuration for MPC is depicted in
Figure 2.
Rate
constrained

uj, U b = AG | S
- +Bug -

RHOpt(' =

Fig. 2. Configuration for RHC
3. Simulation results

Consider the linear system (1) with matrices

- [170 —0.72 N
=[P o

and output vk = [1 02] k. The parameters of the
backlash function in (3) are m = 1, r = 03, [ =
-0.3. The rate constraint in (10) is 4= land the
matrices in the objective function (13) are selected as
in (14) with Q = T and R = 0.01. We first designed a
MPC computed for the linear system only under rate
constraints, that is, without backlash compensation.
Figure 3 shows the resulting output and input
responses when the is no backlash in the loop. The
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same controller was simulated after introducing
backlash in the loop as in Figure 2. The resulting
output response and the signals at the input and
output of the backlash nonlinearity are plotted in
Figure 4. We can see that the presence of backlash
introduces oscillations in the responses. Secondly, we
simulated the closed loop system of Figure 2 under
MPC with backlash compensation as described in
Section 2. The resulting output response and the
signals at the input and output of the backlash
nonlinearity are plotted in Figure 5. We can see that
the optimal controller compensates the backlash
oscillation effect while maintaining the performance
close to that without backlash (Figure 3). The
resulting output response and the signals at the
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Fig. 3. Linear system output (top) and input (bottom)
for RHC for the linear system without backlash in
the loop.
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Fig. 4. Linear system output (top) and backlash input
and output (bottom) for RHC for the linear system
without backlash compensation.

4. Conclusion

We have presented an algorithm for backlash
compensation at the input of a stable linear system
under rate constraints. The algorithm is based on the
traditional QPs arising in the receding horizon optimal
control problem for the same system. Simulation
examples have shown that performance degradation is

small with respect to the optimal solution. In addition,
the computational load is smaller since a feasible
rather than optimal solution has to be obtained at
each step.
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Fig. 5. Linear system output (top) and backlash input
and output (bottom) for RHC with backlash
compensation.

Reference
[1]M. Nordin and P-O. Gutman. Controlling mechanical
systems with backlasha survey. Automatica, 38:1633.1649,
2002.
[2] A Gelb and W. E. Vander Velde,” Multipleinput
Describing Functions and Nonlinear System Design.
McGRaw-Hill, New York, 1968.
[31 G. Tao and P. V. Kokotovi'c. Adaptive control of
systems with backlash. Automatica, 29(2): 323.335, 1993.
[41G. Tao and P. V. Kokotovi'c. Adaptive Control of
Systems with Actuator and Sensor Nonlinearities. Wiley,
1996.
[5] R. R. Selmic and F. L. Lewis. Neural net backlash
compensation with Hebbian tuning using dynamic inversion.
Automatica, 37:1269.1277,2001.
[6]H Zabiri and Y. Samyudia. A self detection and
compensation of actuator backlash in the framework of
constrained MPC design. In Proc. 5th Asian Control Conf.,
Melbourne, Australia,2004.
[71 A. Bemporad, G. Ferrari-Trecate, and M. Morari,
"Observability and controllability of piecewise affine and
hybrid systems. IEEE Trans. on Automatic Control,
45(10):1864.1876, 2000.
[8] A Bemporad and M. Morari,"Control of systems
integrating logic, dynamics and constraints. Automatica,
35(3):407.427, 1999.
[9] F. Borrelli M. Baoti’c, A. Bemporad, and M.Morari,”An
efficient algorithmfor computing the state feedback optimal
control law for discrete time hybrid systems. In Proc.
American Control Conf.,, Denver, CO, 2003.
[10] G. C. Goodwin, M. M. Seron, and J. A. De Don’a.
Constrained Control and Estimation: An Optimisation
Approach. Springer, 2005.
(111 D. Q. Mayne and S. Rakovi‘c,” Model predictive control
of constrained piecewise affine discretetime systems.
International Journal o Robust and Nonlinear Control,
13(3):261.279, 2003.
[12] D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.OM.
Scokaert. Constrained model predictive control: Stability and
optimality. Automatica, 36:789.814, 2000.

- 2473 -



