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Abstract - In this paper, we present the structure of fuzzy
neural network(FNN) based on wavelet function, and apply this
network structure to the identification of nonlinear systems. For
adjusting the shape of membership function and the connection
weights, the parameter learning method based on the gradient
descent scheme is adopted. And an approach that uses adaptive
learning rates is driven via a Lyapunov stability analysis to
guarantee the fast convergence. Finally, to verify the efficiency
of our network structure, we compare the identification
performance of proposed wavelet based fuzzy neural
network(WFNN) with those of the FNN, the wavelet fuzzy
model(WFM) and the wavelet neural network(WNN) through
the computer simulation.

1. Introduction

When researchers want to find the model of a system
mathematically, the differential equation has been widely
used. However, there is so much nonlinearity and a number
of time constrains in realistic systems that the accurate
differential equation can hardly be obtained. Though the
comparatively precise model is acquired, the model
efficiency is decreased by model approximation. In order to
solve this problem, intelligent techniques, based on neural
networks and fuzzy logic, have also been developed for
system identification{1]-{3]. Even though these intelligent
modeling  strategies have shown their effectiveness,
especially for nonlinear systems, they have certain
drawbacks derived from their own characteristics. Therefore,
for the identification of nonlinear system, we designed a
fuzzy neural network(FNN) structure based on wavelet that
merges these advantages of neural network, fuzzy model
and wavelet transform[4]. The basic idea of wavelet based
fuzzy neural network(WFNN) is to realize the process of
fuzzy reasoning of WFM by the structure of a neural
network and to make the parameters of fuzzy reasoning be
expressed by the connection weights of a neural network.
For adjusting the shape of membership function and the
connection weights, the parameter learning method based on
the gradient descent(GD) scheme is adopted. And an
approach that uses adaptive learning rates is driven via a
Lyapunov  stability analysis to guarantee the fast
convergence. Finally, to verify the efficiency of our
network  structure, we compare the identification
performance of proposed WFNN with those of the FNN,
the WFM and the wavelet neural network(WNN) through
the computer simulation.

2. WaveletBasedFuzzyNeuralNetwork

In our WFNN structure[4], the network output Vo s
calculated as follows:
j’r = ian:xn +zk: B/rd’j

n=t J=t (1)
In our network structure, the network weight set,
y={a,0,d, m} s tuned to minimize the identification error
via the GD method. In order to apply the GD method, the
squared error function is defined as follows:
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where, Y=I[5 23] are the output values of WENN and
Y, =¥ Y2 V) are the desired values. Using the GD
method, the weight set, Y={a,o,d.m} can be tuned as
follows:
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where, E=[0=3)0=5)e=3)] and subscript P
denotes each network weight. And 7 is called the learning

=v,(k)+n-E-D,, (3)

rate. The gradient set of WFNN output Y with respect to
weight set is calculated as in Eq. (4) and each gradient of

WFNN output Y with respect to each weight is presented
as in Eq. (5) to Eq. (7):
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3. Stability Analysis

In the update rule of Eq. (3), selection of the values for
the learning rate 7 has the significant effect on the
network performance. Generally, if 7 is too big, the model
is unstable. And for the small 7, although the convergence
is guaranteed, the speed is very slow. Therefore, In order
to train the WFNN effectively, adaptive learning rates,
which guarantee the fast convergence and stability, must be
derived. In this section, the specific learning rates for the
type of network weights are derived based on the
convergence analysis of a discrete type Lyapunov function.

Theorem 1: Let "o be the learning rate for the output e

influenced by weight vector ¥» of the WENN. G,.(%) and

F.(k)
defined  as G (k)_av 03] and

GpemB) =max,[G , (0]

Euclidean norm in %". Here, subscript 7 and ¢ denote
cach weight and output, respectively. Then the convergence

Gream k) are

respectively, and |-} is the

is guaranteed if 7, is chosen as follows:

2
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Proof:
In this analysis, a discrete type Lyapunov function is
selected as

(k)= —e (k) ©)

where, e.(K)is the difference between the desired value

V.(k)and the output value .9, Then, the change of
Lyapunov function is obtained by

- 2
AV(k):V(k+1)—V(k):E[ec(kH)—ec(k)], (10)
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In the update rule of Eq. (3), &7,%) is defined as
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and the error difference can be represented by

where,

(11)
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From Eqs. (10) -
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(12), A¥(%) can be represented as
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Let us define G,c® and Grem®) as " 0y,(k) and
G peman(h) = max‘"G”(k)” respectively. Since
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Remark 1: The convergence is guaranteed as long as Eq.
(14) is satisfied, i.e.

1
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The maximum learning rate, which guarantees the fast

convergence, can be obtained as "p:cix.m(k)=l, ie.
L

G} (k) (7
which is the half of the upper limit.
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Theorem 2: Let Mo = ows Moos Mnes Mlacd be the learning
rate set for the weight set, Y=f{a,0,d,m},of WFNN and
G, (%) is  defined as  the
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definition of Theorem 1, the maximum condition can be

obtained as
¥. (k)
da, (k) ‘ =mar, i < VW, I""“. Thus

Gi.r....,(k)=N|X,.|,',_x’ where % is the »- th input value of
FWNN and N is the number of input. m Q.E.D
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4. Simulation Results

In this simulation, we consider the Duffing system that is
the representative chaotic system. The state equation of
Duffing system is as follows:

[i(l)}: »)
WO} |ax(t) - @) +a,y(1) + beos(ex) |, (19)

where typically =11, 4,=04  p=21 w=18 1In this
simulation, the inputs of the identification model are the

present and previous values of X(f). Here, the initial state

is [0 yO) =[10]" And the initial values of network
weight are randomly determined and sampling time is
0.05sec. The simulation environments and identification
results are as shown in Table 1. Figure 1 shows the
desired output, the WFNN model output and the error
between these outputs, respectively. And Fig. 2 represents
the adaptive learning rates for the fast convergence and
stability.

Table 1. The simulation environment and resuits

MF of | Wavelet
Para .
each (Rule Learning rate MSE
meter
input number)
Our WFNN 3 9 33 | Adaptively (initial value : 0.1)] 00002329
Our WFNN 3 9 33 | Expenimentally fixed - 009 0.0007112
WFM 9 9 45 | Expertmentally fixed . 0.015 000293}
FNN 5 25 47 | Experimentally fixed 0.15 0.2685
WNN * 10 52 | Experimentally fixed - 0.02 0.601763
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Fig. 1 ldentification results for the WFNN model
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Fig. 2 Adaptive learning rates for the WFNN weights

As a result, if the identification error is increased then the
learning rates are increased too for the fast convergence,
and if it is decreased then the learning rates are decreased
for the accurate identification performance. In our
experiments, we use the mean squared error(MSE) as the
identification error for comparison of performance. From
Fig. 1 and Table 1, we confirm that the identification
performance of our WFNN model is better than those of
other network models.

5. Conclusions

In this paper, we have proposed a FNN structure based on
wavelet transform, which merges the advantages of neural
network, fuzzy model and wavelet. And an approach that
uses adaptive learning rates was driven via a Lyapunov
stability analysis to guarantee the fast convergence. As a
result, if the identification error was increased then the
learning rates were also increased for the fast convergence,
and if it was decreased then the learning rates were
decreased for the accurate identification. Thercfore, the
learning rates were adaptively determined to rapidly
minimize error between our WFNN output and the desired
output. As a final result, we have confirmed that the
identification performance of our WFNN model is better
than those of other network models.
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