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ABSTRACT:

Unsupervised spectral angle classification (USAC) is the algorithm that can extract ground object information with the
minimum “Spectral Angle” operation on behalf of “Spectral Euclidian Distance” in the clustering process. In this study,
our algorithm uses the unit vector instead of the spectral distance to compute the mean of cluster in the unsupervised
classification. The proposed algorithm (MUSAC) is applied to the Hyperlon and ETM+ data and the results are
compared with K-Means and former USAC algorithm (FUSAC). USAC is capable of clearly classifying water and
dark forest area and produces more accurate results than K-Means. Atmospheric correction for more accurate results
-was adapted on the Hyperion data (Hyperion-FLAASH) but the results did not have any effect on the accuracy. Thus
we anticipate that the “Spectral Angle” can be one of the most accurate classifiers of not only multispectral images but
also hyperspectral images. Furthermore the cluster unit vector can be an efficient technique for determination of each
cluster mean in the USAC.
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1. INTRODUCTION

The fundamental premise of the remote sensing of land
cover/land use is that every surface object has its own
unique pattern of reflected, emitted, and absorbed
radiation across the spectral band and the same types of
surface objects show similar spectral response patterns
(James, 1996). Though hyperspectral data can derive
complete reflectance spectrum, those with classical
classification methods fails to provide reliable results due
to the many bands, unstable training information and so
on. Dimensionality reduction methods like Feature
Extraction or Feature Selection have been used (Anil,
2003), and new algorithms for Hyperspectral data

classification have been proposed to solve these problems.

Spectral angle is a new approach based on the fact that
the spectra of the same type of surface objects in RS data
are approximately linearly scaled variations of one
another due to atmospheric and topographic effects
(Youngsinn, 2002). SAC (Spectral Angle Classification)
classifies the image pixels using the minimum “Angular

Distance” rule and does not require the training data to be -

normally distributed. Furthermore, it is insensitive to the
data variance and the size of the training ‘data set.
However, the researches on the SAC were mainly applied
to the supervised classification (Youngsinn, 2002; Kruse
et al, 1993b) and moreover the entire- spectral angle
concept could not be used in the unsupervised
classification as the cluster mean had to be computed by
distance concept (Kai-Yi Huang, 2002; Arel Weisberg,
. 1999).

In this paper, we applied the modified spectral angle
technique to unsupervised classification based on -
previous research and obtained a more efficient algorithm
by using the mean of the angle based on the unit vector
(also called angle mean) for the calculation of a cluster
mean. Our algorithm (MUSAC) was tested to the
Hyperion, Hyperion-FLAASH and ETM+ data and
compared the results with K-Means and former USAC
algorithm (FUSAC).

2. UNSUPERVISED SPECTRAL ANGLE
CLASSIFICATION (USAC)

The processing of USAC is as follows:
1. Select the seed points.
2." Assessment the similarity through the angle
distance between seed points and unknown pixels
(sub-section 2.1)
3. Calculate each cluster mean (sub-section 2.2)
4. Repeat steps 2 and 3 until the iteration reaches
the user specified threshold

2.1 Assessment of Similarity

Contrary to other conventional clustering algorithms,
USAC computes the similarity of an unknown spectrum
to a reference spectrum by using the spectral angle rule.
The spectral angle between every pixel in the image and
every cluster mean is found by using equation (1).
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Small values of ¢, indicate that the two spectra are

quantitatively similar (Arel et al, 1999, see the equation
(2)), where, m is the number of band, and X4 is one

of the pixels that were randomly selected.

2.2 Determination of Cluster Means

After finding the similar elements of the clusters, the
means of elements were generally recalculated by using
“Distance Mean” in the former researches. In this study,
we introduce a more efficient algorithm at the spectral
angle hypothesis with “Unit Vector” (or Angle Mean,
equation (3)). The related equation is as follows:
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The angle 0,.’,‘ between seed points and each band is
calculated by equation (4), and Hg is corresponded to
the mean of angle. Here, N is the number of elements

of any cluster. The mean of cluster (4, % ) is computed

by multiplying the unit vector by the cosine angle of the
mean of angle (equation (6)). In consequence, the

spectral angle is calculated again through the equation (1).

‘k H
UnkaownPixef 2

_ 7
W ’éqﬁbistagg'ﬂean Pixel

/ S e
: : L Unknown Pixel 1

L Unit Vector (length=1) Band i
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As shown in Figure 1, if unknown pixels 1 and 2 are
included in the same cluster, FUSAC algorithm
calculates the cluster mean with certain distance at each
band but is not suitable for some cases such as where the

pixel exists near 0. We believe that the use of the unit
vector is a more appropriate technique to be applied to
remotely sensed data because RS data generally exist in
the middle of the space plane, and the unit vector is
insensitive to the outlier.

Finally, the above steps are repeated until the iterations
reach the user specified convergence threshold. In this
study, 10 seed points for clustering were selected by
equal division of the range of DN each band, and the
iterative calculations just stopped when the number of
elements changed by less than 1%.

3. IMPLEMENTATION
3.1 Data and Preprocessing

The USAC algorithm was applied to two different sets
of data, the Hyperion data which is loaded on the EO-1
satellite and ETM+ on Landsat-7. The Hyperion data
provides a high spectral resolution hyperspectral imager
capable of resolving 242 spectral bands (from 0.4 to 2.5
pum) with a 30-meter resolution (same as ETM+ spatial
resolution). Each image was scanned on the same day,
i.e., April 3, 2002, and the test was conducted in the
southern part of Seoul, Korea.

As each image must be of the same spot, ETM+ was
registered on the basis of the Hyperion image and each
image made by re-sampling has the same size (200 pixels
by 500 pixels). Ninety-three bands having the same band
width as the ETM+ wavelength were selected, and each
band corresponded to the following: band 1 (ETM+):
band 10-17 (Hyperion), band 2: band 18-26, band 3: 27-
34, band 4: band 39-55, band 5: band 140-161, and band
7: band 192-220. The false color composite Hyperion
images, which were preprocessed for implementation, are
shown in Figure 2.

FLAASH (Fast Line-of-sight
Atmospheric Analysis of Spectral
Hypercubes), which is normally used
as atmospheric correction, was
developed with the support of the U.
S. Air Force Research Lab as the
first-principles atmospheric
correction modelling tool for
retrieving spectral reflectance from
hyperspectral radiance images (A.
Berk et al, 1989). Unlike many other
atmospheric correction techniques,
FLAASH incorporates the
MODTRAN4 (Matthew et al, 2000)
radiation transfer code.

Figure 2.
Hyperion Data

3.2 Validation

Three data (Hyperion, Hyperion-FLAASH, and
ETM+) were passed through the process with selected
ten seed points. On the basis of the three data, two
techniques, spectral K-Means and FUSAC, were applied
to similarity calculation. The results were comprised of
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six products. Finally, three data out of the six results from
the MUSAC were tested for recalculating the cluster
means. Therefore, finally nine result images were
produced and assessed. The indices, @ to (D, is given in
Figure 3. The nine results, which were classified through
each clustering algorithm, are presented in the Figure 4
(You can find the results at the end of this paper).

@ETM+
(250x500%6)

@ FLAASH
(250x500%93)

@ Hyperion
(250x500%93)

.

Class Index (5 Classes and 9 Cases)
Figure 3. Flow Chart

4. RESULT

Thematic reference map was used for quantitative test
of clustering results. MLC (Maximum Likelihood
Classifier) and the supervised SAM (Spectral Angle
Mapper), MDC (Minimum Distance Classifier), and
ECHO (Extraction and Classification of Homogeneous
Objects) classification techniques were applied and the
pixels included in the same area of each result were
selected for organizing the error matrix. Five classes,
namely Water, Forest, Soil, Urban and Grass, were
trained as a test set, and the training set were processed
with the Multispec program.

The accuracy of USAC was higher than the results of
K-Means. In this perspective, the spectral angle is an
effective method for the hyperspectral data in addition to
multispectral data. This result was already demonstrated
by Youngsinn Sohn et al (Youngsinn, 2002), and we
confirmed this result by visual and quantitative tests. In
the visual estimation, the result of K-Means clustering
can not distinguish the dark forest from water but USAC
(especially MUSAC) can (see the Figure 5).

Proving that the atmospheric correction method needs
to be applied to the unsupervised classification algorithm
to obtain a better product, the atmospheric corrected
Hyperion data (®, ® and ®) and not (@, @ and ®)
were compared. The results did not show any other
difference through visual approach and also the
classification accuracy of Hyperion-FLAASH data
showed a similar or somewhat lower result in comparison
with Hyperion. In the assessment of time and stability of

astringency, you can find that the result of Hyperion
shows better than Hyperion-FLAASH (Figure 6).

From Figure 7, we can see the particular result in the
case of (@. That is, the five clusters only appeared, and
the rest was not classified. This is due to the fact that K-
Means is insensitive to the outlier. Figure 7 shows the
particular result with a binary image and 6th-10th images
look black.

Figure 7. Particular Result in the Case of @

. 5. CONCLUSION

In this paper, we examined one of the classification
algorithms, MUSAC, and also discussed the test
performed on the Hyperion and ETM+ data. Atmospheric
correction, FLAASH, was used for the pre-processing of
the Hyperion data. Contrary to the FUSAM algorithm,
the angle mean for the cluster center was used in this
study and compared with results of other algorithms.

Some essential conclusions from the result using nine
cases which were branched off from three data can be
summarized as follows:

1. Atmospheric correction has little influences on
the result of the clustering algorithms.

2. The spectral angle can be one of the most
accurate classifiers and a valuable tool for clustering.
3. The unit vector can be an efficient technique for
determination of each cluster mean in the USAC.

USAC is insensitive to near dark point because it uses
only the direction of the spectra and not the length. Based
on the understanding of the limitation of the USAC
algorithm, we plan to conduct further studies on the
following topics:

1. Calculate of the cluster mean by applying the
split and merge technique

2. . Study the combination of the angle and distance
concept as a solution of the above second limitation
‘3. Research on the SAC value files for the
weighted solution
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Figure 4. Nine Results with each Clustering Algorithm
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Figure 5. Critical Difference of Water Class in each Case (Note: The white color corresponds to water class.)

. Table 1. Accuracy and Iteration Number of each Classification Result

Cases @ ® © @ ® ® ® ®
Accuracy 69.31% 75.98% 78.01% 71.32% 60.58% 73.64% 77.33% 74.55% 70.88%
Iteration No. 35 16 20 30 13 37 24 11 29
12
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Figure 6. Assessment of Astringency for Iterative Calculation (x-axis: Iteration No. , y-axis: Changed Pixel (%))
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