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In the application of the energy and momentum principles in pipes and channels,
standard hydraulic practice is to assume that the velocity is constant across a section and to
ignore the fact that there are boundary layers on all solid surfaces. A simple and
approximate method of simulating the real flow is to introduce energy (Coriolis) and
momentum (Boussinesq) correction factors as fundamental to the process of describing
real fluid flow. They are usually presented in textbooks, however, as a brief afterthought
rather than as fundamental, and thereafter are almost completely ignored. To quote
Shakespeare’s Hamlet, they are “... a custom more honoured in the breach than the
observance”.

Most presentations of the energy principle in hydraulics use Bernoulli’s theorem, valid
along a streamline. In general the Bernoulli ”constant” varies across streamlines, a point
which is not always emphasised in lectures, books, or understood by students; and, for real
fluids it varies along the streamline, but by different amounts for different streamlines.
Many textbooks include a consideration of the energy equation in an integral sense, but
only in passing. Similarly, the momentum principle has been treated inadequately,
although it has essentially always been an integral principle. The neglect of the proper
consideration of energy and momentum in practical flow problems means that there can be
up to a 5-10% error even in simple flow calculations. It would seem to be important to use
the integral form of the conservation of energy principle and the corrected momentum
principle in introducing hydraulics to students both pedagogically and practically.

In this paper, generalised energy and momentum coefficients are derived based on
integral conservation principles. Their values are larger than previously recognised, due to
the inclusion of secondary velocities and turbulence. The traditional and generalised
versions are shown in the Table:
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These coefficients can be used in steady and unsteady flows in pipes and channels. The
equations for steady flow which result for a control volume with a number of planar faces
through which fluid flows are:
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The summations in j are over all parts of the control surface through which fluid passes.

Usually the loss term ~& | is assumed to be zero for arbitrary control volumes, but it is
possible to calculate this for pipes and channels using the Weisbach equation. Other
symbols are: () is discharge, p is the mean pressure, p is density, 4 is cross-sectional

area, g= (0,0,_ g) where g is gravitational acceleration, z is the vertical co-ordinate,

directed upwards, fi is a unit vector with direction normal to and directed outwards from
the control surface, and P is the force exerted by the fluid on the solid part of the control
surface, while 7 is the volume enclosed. These are all commonly used terms. What is
different in the above equations is that H is the mean total head across a section, as defined
in equation (1c), which contains the energy correction factor @,, while B. in equation

(1b) is the momentum correction factor. Both factors are defined in the Table above, and
corrected for turbulence and the effects of secondary flows.

The energy equation (1c) is derived from integral expressions, and is not Bernoulli’s
equation, as it calculates the integrated energy flow through parts of the control surface.
For theoretical velocity distributions typical values of O are 1.05-1.1, while B varies

from about 1.015 to 1.05. However, previously laboratory measurements of o over a
smooth concrete bed give 1.035-1.064, while for earth channels, larger values have been
found, such as 1.25 for irrigation canals and 1.35 in the Rhine River. Secondary flow
velocity contributions to the magnitude of @, might be 0.01 to 0.05, especially

downstream of a pipe bend or in a meandering river. The contribution of turbulence to O
is roughly 0.01 to 0.02. Generally, the values of both energy and momentum correction
factors are larger than hitherto considered.

Finally, several problems from elementary hydraulics are presented using the
generalised energy and momentum correction factors. The solution of each is enhanced by
including momentum or energy coefficients where appropriate. Routine inclusion of the
coefficients in the derivations and in problem solving might be considered for
undergraduate teaching. The problems include the force due to a jet of water, the siphon,
and the Venturi meter. In the latter, the result obtained using Bernoulli’s equation is usually
modified by a "velocity coefficient” due to “losses in the energy equation”. Using a
Coriolis coefficient explains that the coefficient is actually necessary to allow for the
variation of velocity across the flow, rather than energy along streamlines, which is not
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allowed for in the Bernoulli approach.

The conclusions of the paper are that for flows in pipes and channels, it is more
physically meaningful to use the integral form of the conservation of energy principle,
rather than Bernoulli’s theorem, which is valid only along a streamline. Equations for
integral momentum and energy principles have been formulated and a simpler expression
of the momentum principle has been found. Traditional Coriolis and Boussinesq
coefficients have been found to be defective, as they neglect the effects of turbulence and
secondary currents. It is asserted that these factors and the integral form of the energy
principle should be included both in teaching hydraulics and in applications in hydraulic
practice.



