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Flooding is a complex and inherently uncertain phenomenon. Consequently flood
forecasts are inherently uncertain in nature due to various sources of uncertainty including
model uncertainty, input uncertainty and parameter uncertainty. Incorporating the
uncertainty estimation in the forecast can help the decision maker within the flood
forecasting and warning system and thus enhance the reliability and credibility of both the
forecasting and the warning system in real time flood management. Several approaches
have been reported to quantify and propagate uncertainty through flood forecasting models
using probabilistic (e.g. Krzysztofowicz, 2001; Beven & Binely, 1992) and fuzzy set
theory based methods (e.g. Maskey et al., 2004). The former approach requires the prior
distributions of the uncertain input parameters or data to be propagated through the model
to the outputs. While the- later approach requires membership function of the quantity
subject to the uncertainty. ' »

In this paper we propose a new method for quantifying uncertainty in flood forecasting
based on analyzing the statistical properties of the model errors. Since the model residuals
result from various sources of uncertainties as mentioned above, the method aims at
estimating their aggregate effect without attempting to separate each individual
contribution. In the situations when distributions of parameters or distributions of model
errors are not known, we propose to use data driven modelling techniques to quantify
uncertainty of flood forecasting in the form of prediction intervals (PIs). Data driven
modelling induce a causal relationship between sets of input and output data in the from of
a mathematical device, which in general is not related to the physics of the real world
situation (Solomatine and Price, 2004). Various data driven techniques such as linear
regression, locally weighted regression (LWR), M5 model trees (MT) and neural networks
(ANN) can be used to predict the PIs using all or part of input instances that are used to
train (calibrate) the forecasting models. Upper and lower PIs are computed separately on
the basis of model errors observed during training (calibration) of the forecasting models.
Fuzzy C-means clustering technique is used to determine zones of the input space having
similar distributions of model errors. The PIs of each cluster are determined on the basis of
empirical distributions of the errors associated with instances belonging to this cluster. The
Pls of each instance are then determined according to grade of their membership in each
cluster.

After training of the model that is used to predict the Pls, they are applied to estimate
the PIs for the forecasts made by the four data driven models (linear regression, LWR, MT,
and ANN) in Sieve (Italy) river basin and simulation made by the two-tank lumped
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conceptual rainfall-runoff model in Bagmati (Nepal) river basin. Their outputs are
compared to uniform interval method (UIM) using prediction intervals coverage
probability (PICP) and mean prediction interval (MPI). The UIM constructs single PI
from empirical distributions of errors on the whole training data and applied uniformly to
the validation data set.

The results show that 96.67% (PICP) of the validation data are inside the computed
prediction bounds for 95% confidence level for 1 hour ahead prediction in Sieve river
basin with average prediction bound of 15.25 m’/s (MPI) using data driven model: MT.
We also repeated experiments with 3 hour and 6 hour ahead prediction in Sieve catchment
and obtained PICPs very close to 95%, but with very wide MPIs.

We also conducted experiments for the Bagmati river basin. The results show that only
5.1% of the validation data fall outside the computed 95% PIs (1.4% and 3.7% below
lower and above the upper PI respectively) with MPI of 332.77 m’/s. Furthermore, these
points are quite uniformly distributed along the range of the observed runoff. The UIM
gives PICP of 92.6% with MPI of 389.25 m’/s.

The presented method does not need any information about the distribution of
parameters and is not based on any assumptions about the distribution of errors. Most of
the existing methods estimate upper and lower PIs, which are symmetrical about the point
estimate. The presented method, however, computes upper and lower PIs independently.
The method is robust and flexible and it can be applied to the outputs of any models
regardless of its class or structure.
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Fig. 1 Computed prediction bounds for SieveQ1 using MT model. Black line corresponds
to predicted runoff, while grey shading represents 95% prediction bounds. Small
circles represent observed value out of computed prediction bounds.
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