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We develop a computer code based on a fourth-order accurate finite-difference scheme
in space and a second-order semi-implicit time integration method, i.e., with O(AP+AXY)
accuracy. The stencil of the fully-conservative, fourth-order accurate scheme on a
staggered grid system developed by Morinishi et al. (1998) uses seven points in each
direction. It is almost impossible to retain the scheme near boundaries and therefore, in
the code it is switched to a second-order scheme near boundaries.

This is compared with results from another code with only O(AP+AX?) accuracy on
several benchmark flows, including the Taylor-Green vortex and lid-driven flows in a
square cavity.

The goal is to demonstrate that using a high-order accurate scheme actually leads to a
clear superiority even if a low-order scheme is employed near boundaries. Our long-term
objective is to develop tools suitable for LES of high-Reynolds-number turbulent flows
with complex geometries.

Fig. 1 shows the details of the switching between the second-order and the fourth-order
schemes near boundaries. Note that the second-order scheme is introduced only in the
direction normal to the boundary and the fourth-order scheme is retained in the other
tangential directions.

The time histories of the energy dissipation rate obtained from DNS of the Taylor-Green
vortex flow are compared with results of fully-resolved pseudo-spectral computations in
Fig. 2. It can be seen that results from the present code are well predicted but that there are
discrepancies between the results from the code with O(AP+Ax%) accuracy and the
reference spectral simulations.
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about spectral methods. The support of the JSPS through the Research Fellowship for
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Fig. 1 Order of accuracy in spatial discretization near boundaries: O, where continuity is
evaluated; [, where momentum eq. (x; component) is evaluated; A, where
momentum eq. (x, component) is evaluated; 0, fourth-order accuracy in both x; and
x, directions; 1, second-order accuracy in x; direction and fourth-order in x,; 2,
fourth-order accuracy in x; direction and second-order in x;; 3, second-order
accuracy in both x; and x, directions.
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Fig. 2 Time history of energy dissipation rate: solid line, fourth-order accuracy in space;
dashed line, second-order accuracy in space; dash-dotted line, pseudo-spectral
simulations.
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