Public transport network connectivity analysis using space syntax

Chulmin Jun*, Kang-Jae Wui*

- * The University of Seoul, Seoul, Kore
- ** HIST, korea

서술시킬대학교

Contents

- Introduction
- Hierarchical Network Configuration
- Applying to Public Transportation
- Integrating into GIS
- Concluding Remarks

Introduction

- Rublic-oriented transportation policies
- Unbalanced supply due to less systematic route planning and operations
- Unbalanced accessibility causes inequalities in time, expenses and metal burden of users.
- Need robust methodology to assess the accessibility or serviceability of the transport routes.

Introduction

- Space syntax is the technique to analyze the connectivity of urban or architectural spaces.
- Has been applied to analyzing movement in indoor spaces or pedestrian paths (not in transport network).
- The study proposes a method to evaluate accessibility of public transport network based on its topological structure.

Hierarchical Network Configuration

- Movement can be described in an abstracted form using its topology.
- Topological description helps focus on the structural relationship among units.
 - For example, pedestrian movement can be described using network of simple lines without considering the details such as sizes of forms, number of people and speed of movement.

Hierarchical Network Configuration

- Hierarchical structure of a street
 - Representing each component with a node and a turn with a link connecting their respective godes

Hierarchical Network Configuration

- This relationship is described thought a variable called depth.
 - Depth of one node from another can be directly measured by counting the number of steps (or turns) between two nodes.

Hierarchical Network Configuration

- Total Depth(TD)

$$TD_i = \sum_{s=1}^m s \times N_s$$

TD_i: the total depth of node i

s: the step from node i
m: the maximum number of steps extended from node i
N_s: the number of nodes at step s

Hierarchical Network Configuration

- Mean Depth(MD) = TD / (k-1
- the total
- Normalized Depth(ND)

$$MD = \frac{1+2+...+(k-1)}{k-1} = \frac{(k-1)k/2}{k-1} = \frac{k}{2}$$

a. completely symmetrical network

$$MD = \frac{k-1}{k-1} = 1$$

b. completely asymmetrical network

$$1 \le MD \le \frac{k}{2}$$

$$0 \le \frac{2(MD-1)}{k-2} \le 1$$

Applying to Public Transportation

- Hierarchical network structure focuses on turns of spaces while the public transportation entails transfers between vehicles.
 - » In hierarchical network description, the deeper the depth from a space to others, the more relatively difficult it is to move from that space to others.
 - » In public transportation, cost generally increases as the number of transfers between different modes increases.

Applying to Public Transportation

Computing depth from each stop

	7 / /			
Stop No.	TD	MD	ND \	√ ND-1
1	14	1.750	0.214	4:67
2	111	1.375	0.107	9.33
3	10	1.250	0.071	14.00
4	14	1.750	0.214	4.67
5	17	2.125	0.321	3.11
6	13	1.625	0.179	5.60
7	12	1:500	0.143	7.00
8	14	1.750	0.214	4.67
9	21	2.625	0.464	2.15

Applying to Public Transportation

- Iterative procedure for computing TD
 - 1.For i=1~k stops
 - 1.1 For all routes that share stop i
 - 1.1.1 Step = i
 - 1.1.2 Find all stops except for stop i and accumulate TD
 - 1.1.3 For all transfer areas found
 - 1.1.3.1 Find all stops in current transfer area
 - 1.1.3.2 For each stop
 - 1.1.3.2.1 for each route
 - Step++ and go to 1.1.2

Integrating into GIS

- Typical GIS data structure alone can not capture the complex relationship in public transportation.
- The relationship among streets, routes, stops and transfer areas can be abstracted into an entity-relationship model in a relational database.

Concluding Remarks

- A method to assess accessibility of public transport network was proposed by defining the network relationship onto a graph.
- An analogy between the concept of depths in pedestrian network and the accessibility of network of transport routes was used.
- An algorithm to automate the computing process was developed.
- If the procedure is applied to a city we can quantify the difference in the serviceability of city areas based on the public transportation.

