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TWO-DIMENSIONAL CAVITATION PREDICTION BASED ON
APPROXIMATE JACOBIAN MATRIX IN TwO-FLUID TWO-PHASE FLOW MODELS

Geum-Su Yeom and Keun-Shik Chang

We developed an upwind numerical formulation based on the eigenvalues of the approximate Jacobian matrix

in order to solve the hyperbolic conservation laws governing the two-fluid two-phase flow models.

We obtained

eight analytic eigenvalues in the two dimensions that can be used for estimate of the wave speeds essential in
constructing an upwind numerical method. Two-dimensional underwater cavitation in a flow past structural shapes or
by underwater explosion can be solved using this method We present quantitative prediction of cavitation for the
water tunnel wall and airfoils that has both experimental data as well as numerical results by other numerical

methods and models.
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1. Introduction

Cavitation is vaporization phenomena of fluids by
depressurization process. Cavitation produces many undesirable
problems in hydraulic machines such as generation of intense
noise, damage to sui‘face, the loss of performance, etc. Cavitation
occurs in the liquids when the local pressure drops below the
vapor pressure. For example, a strong rarefaction wave which
propagates into a liquid or acceleration of flow on a hydrofoil
can produce cavitation regions.

It is very difficult to numerically simulate cavitating flows
due to its complex physical process which is still not well
understood. Hence, there are many cavitation models that makes

use of additional empirical relations good for a single- fluid
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formulation. This approach is direct and simple because it can
utilize the existing single-phase codes. However, since it entirely
depends on the cavitation model to be used, its application is
quite restrictive.

We address in this paper how to solve the 2-D cavitation
problems using the two-fluid two-phase flow model. The
one-dimensional approximate Jacobian matrix method that has
been proposed by the present authors [1] is extended to two
dimensions. Generally the 2-D cavitation prediction using the
two-fluid model is notoriously known very difficult due to the
mathematical instability. We solve two 2-D shape cavitation
problems, ie., the NACA16012 hydrofoil and the Venturi-type
nozzle. The results are compared with the experimental data

2. Governing equations

The two-dimensional compressible two-fluid two-phase flow
model can be written as
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where the corresponding vectors are given as
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The variables g, p, 3, y, F and g represent the void fraction,
the density, the x- and y-velocity, the total energy, and the
common pressure, respectively. The interfacial pressure 4 and
the interfacial velocities 47 47 should be properly modeled. The
subscript o and ] represent the gas and the liquid phase,
respectively. The void fraction obeys @, +a,=1.

The stiffened-gas equation of state is employed to close the
system:
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where 3, and ¢, is the specific heat ratio and the internal
energy of each phase, respectively.
The constants for each phase are given by

=14, po,=0Fa for azr
7:=2.8, P, =8.5x10%P2 far water @

To make the two-fluid governing equation system stable, we
employ the following two-dimensional interfacial pressure model:

p‘=p~8—a££“a—‘-[(ug—u)2+(vg—v)2]

2p0rtap, ®

where 5> is the damping coefficient.
The interfacial velocities 5/ 1 are modeled as the velocity at
the center of mass as follows:
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3. Approximate Jacobian matrix

Yeom & Chang [1] proposed a simple and powerful method
to estimate the characteristic wave speeds: First we reduce the
equation system to derive a set of analytic eigenvalues. These
approximate eigenvalues are then used in the HLL scheme when
we numerically integrate the full equation system. Major
advantage of the present method is that these eigenvalues do not
depend on the stability terms at all.

The governing equation system becomes simpler when the
interfacial transfer terms are dropped. The equation system in the
rotated frame (% 73) becomes an augmented one-dimensional
system as follows:

o U, I F _
at+a’5c 0 0

The above equations can be transformed using the primitive
variables W@ 1,24, 21,0,,01,05,0) T into
7 TS AT N

LV AT LAY, i By

Tx ®

where ﬁ the approximate Jacobian matrix in the rotated
frame and has the following form:

0, 0y P30, 0 0 0 0
Q@@ 0 0 00
G0, 0,00 0 0 0
100,008,000 0
0000600 0
00000000
@, 0, @, @, 0 0 0y 0 o
0y 05 050y 0 0 0 Oy

The eight eigenvalues of this hyperbolic system can be
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obtained analytically:

Ai=u,, As=u;, A§=u,, Aj=u;, Afs=u,ta,,
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Among the eight characteristic fields connected to these
eigenvalues; the first two are linearly degenerate, the next two
are shear waves, and the rest four are genuinely non-linear. If
both phasic velocities are set to zero, two eigenvalues A, AS
represent the sonic speed of the gas and the liquid phase in the
two-phase mixture, respectively.

4. Numerical Method

The equation system is discretized using the finite volume
method with numerical flux at the cell interface in two

dimensions as
4 ¢ &
U7+1= U’:—I rg T;:LMI"::*AI( HD; V((Ig),'

where A, L; and V(a,); are the area of cell I, the
length of the boundary s in the cell 1, and the gradient of void
fraction, respectively.

The rotated numerical flux at the cell interface F;, is given
using the HLL (Harten, Lax, and van Leer) Riemann solver. The
fastest wave speeds used in the HLL scheme are computed by
our eigenvalues based on the approximate Jacobian matrix.

5. Results and discussion

5.1 NACA16012

To numerically simulate the shape cavitation phenomena in
two dimensions using the current two-fluid model, we first
consider the NACAI6012 hydrofoil. Franc and Michel[2]
performed the experimental study on cavitating flows around
NACA16012 foil in the hydrodynamic tunnel. The chord of the
symmetrical foil is 10 cm. Fig. 1 shows the experimental
photograph of cavitating bubbles attached on the foil surface.

The frec stream water consists of 99% pure water and 1%
dispersed gas at atmospheric pressure. At inlet, the flow is set to
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the constant speed, v=6 m/s. At outlet, we use a first-order
extrapolation in accordance with wave directions. A CFL=0.4 and
61x15 computational grids are used.

Fig. 2 shows the numerical computation of 2-D cavitation of
the NACA16012 hydrofoil. The result reveals that the cavitation
zone is well predicted and its position is similar to the
experiment: it is located somewhat more backward than the
experiment.

Fig. 1 Cavitating flow experiment of NACA16012 hydrofoil at
v=6 m/s by Franc & Michel (1985).

NACA16012

Void fraction

Cavitation Zone

Fig. 2 Numerical simulation of 2-D cavitation of NACA16012
hydrofoil

5.2 Venturi-type nozzle

Next, we consider a cavitation generation in the Venturi-type
nozzle which was investigated experimentally by Stutz and
Legoupil(3]. They conducted the experiment in a cavitation
tunnel. The est section is 520 mm long, 44 mm wide, and 520
mm high. The angle of the convergent part of the nozzle is 18
degree and the angle of diverge nt part is 8 degree. Fig 3
shows the X-ray image of the cloud cavitation in the
Venturi-type nozzle at v=8 mvs.

Numerical computation is made with 22()x4() computational
grids. A water with 1% dispersed gas is used for free stream
flows at atmospheric pressure. A CFL=0.4 is used. The boundary
conditions are the same as the previous case.

Fig. 4 shows the numerical simulation of cavitating flows of
the Venturi-type nozzle in two dimensions. The cavitation occurs
from the nozzle throat, which well explains the experimental
resuit.
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Fig. 3 Photograph of the cloud cavitation in a Venturi-type nozzle at
v=8 m/s by Stutz & Leogoupil (2003)

Venturi-type nozzie

Cavitation Zone

Fig. 4 Numerical simulation of cavitating flows of the Venturi-type
nozzle in two dimensions

5. Conclusions

A two-dimensional compressible two-fluid two-phase model
has been formulated in this paper. We numerically have solved

the 2-D shape cavitation phenomena for the NACAI16012
hydrofoil and the Venturi-type nozzle using a new method
proposed by the present authors, namely, the approximate
Jacobian matrix method. The numerical results show that the our
method well predicts the cavitation directly, ie., without
additional empirical cavitation models, so can be used widely.
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