NDR Property and Energy Band Diagram of Nitro-Benzene Molecule Using STM

STM에 의한 니트로벤젠 분자의 NDR 특성과 에너지 밴드 구조

  • 이남석 (동아대학교 전기공학과 & CIIPMS) ;
  • 장정수 (경일대학교 전기공학과) ;
  • 권영수 (동아대학교 전기공학과 & CIIPMS)
  • Published : 2005.11.04

Abstract

It is possble to study charge transfer property which is caused by height variation because we can see the organic materials barrier height and STM tip by organic materials energy band gap. Here, we investigated the negative differential resistance(NDR) and charge transfer property of self-assembled 4,4-Di(ethynylphenyl)-2'-nitro-1-(thioacetyl)benzene, which has been well known as a conducting molecule. Self-assembly monolayers(SAMs) were prepared on Au(111), which had been thermally deposited onto pre-treatment($H_{2}SO_{4}:H_{2}O_{2}$=3:1) Si. The Au substrate was exposed to a 1 mM/l solution of 1-dodecanethiol in ethanol for 24 hours to form a monolayer. After thorough rinsing the sample, it was exposed to a $0.1{\mu}M/1$ solution of 4,4-Di(ethynylphenyl)-2'-nitro-1-(thioacetyl)benzene in dimethylformamide(DMF) for 30 min and kept in the dark during immersion to avoid photo-oxidation. After the assembly, the samples were removed from the solutions, rinsed thoroughly with methanol, acetone, and $CH_{2}Cl_{2}$, and finally blown dry with $N_2$. Under these conditions, we measured electrical properties of self-assembly monolayers(SAMs) using ultra high vacuum scanning tunneling microscopy(UHV-STM). The applied voltages were from -1.50 V to -1.20 V with 298 K temperature. The vacuum condition is $6{\times}10^{-8}$ Torr. As a result, we found that NDR and charge transfer property by a little change of height when the voltage is applied between STM tip and electrode.

Keywords