카올린 오손물 누적량 및 누설전류 변화에 관한 연구
박재훈*, 송일근**, 이제봉***
중앙대학교 전기전자공학과*, 한국전력연구원**

A Study on Kaolin Contaminants Accumulation Contents and Leakage Current Variation
Jae-Jun Park*, Jae-Bong Lee**, Il-Keun Song***
Joonghu Uni*, KEPRI**

Abstract: This study performs a simulation for an accumulation mechanism of contaminants, which were produced in an industrial belt of inland, on the surface of insulators. From the simulation, silicon insulators presented higher accumulation than that of EPDM(Ethylene Propylene Diene Terpolymer : EPDM) insulators on the same distance in the case of the Virgin accumulation, and this result presented the same result in the insulator applied in actual fields. In the case of the accumulation test for the Virgin insulator and insulators used in actual fields, it is evident that the Virgin insulator presented more accumulation than that of the insulator used in actual fields. The results can be caused by the generation of LMW (Low Molecular Weight) on the external material of polymer insulators, and the level of the accumulation can be changed according to the degree of the continuous generation of LMW.

Key Words: Kaolin Contaminants, Pollution, Polymer Insulator

1. 서론
오손물 예측 고장(failure)은 송배시스템으로부터 전력 풍부에 크게 영향을 주고 있다. 예측 고장 과정은 개개, 비 또는 이속로부터 출가는 변화가 오손물(Contaminants)을 공급하여 양자변성 전도영역을 형성하게 된다. 예측을 가로질러 전류를 흘리는 것은 표현식 현을 알아차리는 것들 가져온 것이다. 자연적인 세정(Natural Cleaning) 또는 제거시각 내부의 세정을 강화하지 않는다면 역상은 겉기능이 설명되어 폐전류 점성이 더욱 강화되어 최후전극 성능의 형태(예: 접촉장-Insulator Failure)로 이어지게 된다. 밀착도는 오손물 성비(품질 및 밸리 그리고 배전설비)에 의해나는 다만 마지막 과정이다. 이러한 음작을 피하기 위하여 고온저온 반응의 정화기 먼지에 대한 연구가 진행되어왔다. 고온저온에 하우징표면상에 누적된 오손물은 제거하기 위한 가장 효과적인 제거기법에 대한 연구의 적극적인 역량을 이용한 고온저온 실험 결과의 하우징 현상진단기법에 대한 연구도 진행되어있고 있다.

설명에 사용된 예측의 피력효과로서 EPDM(Ethylene Propylene Diene Terpolymer)과 실험 고형부를 이용하여 제조된 고온저온 반응을 사용하였다. 특히, 실험 고형부는 신흥 내부성 오온에도 내열성이 우수하고, 동시에 밀착성(hydrophobicity)이라고 알려진 특정한 특성으로부터 오온에 견디는 전력부속에도 우수한 매도에 의뢰지고 사용한다. 밀착성은 음작을 부분적으로 하는 성질을 맡으며, 실험 고온 저온의 경우 오손물 무각 후에도 내부로부터 LMW(Low Molecular Weight:어리나 LMW로 우

2. 실험
2.1 실험장치
여러 종류의 예측에 오손물 누적 실험을 위하여 자체 설계하여 제작된 실험체의 크기는 가로×세로×높이가 2100mm×1000mm×1000mm로 제작되었다. 오손물 누적 실험을 위하여 배전용 고온저온 예측을 수집하게 배치하였다. 사전에서 배치한 도구를 나타내었다. 각각의 예측에는 오손물인 Kaolin 누적량을 알기 위하여 저온의 배치용 오손물 대체용기로 오손물 분사용기 기준으로 할 때 P1, P2, P3, P4, P5, P6의 위치는 각각 다음과 같다. 즉 360mm, 600mm, 840mm, 1080mm, 1320mm에 위치하였다. 각각에 클리어간격은 240mm로 일정하게 유지하였다.
3. 결과 및 고찰
신들린 EPDM A형 고분자에 제사를 나타낸 바와 같이 수평으로 배치하였다. Kaolin 분산지점에서 상부로 경사지게 분산시켜 Kaolin 오손분량의 비중기를 계획하였다. 그 결과 분산지점에 가까울수록 오손물 누적량이 크게증가하였고, 이와 반대로 멀리 오손물의 누적량이 적게누적된 결과를 나타내었다. 이는 오손물을 늘릴 수 있는 바람의 세기, 오손물 입자의 종량, 습도의 비율에 따라 달라질 수 있다. 그림2는 Virgin EPDM 고분자에서의 각각의 위치에서 오손물 누적량의 측정결과를 나타내었다.

고분자에제가 수평으로 설치되었기 때문에 Sheath면에가장 많은 오손물이 부착되었고, 금규류 부류에도 그리도 적은 부분에는 미약한 정도로 부착되었다. 신들린의 경우 발수성이 대단히 양호하고, EPDM 하우징 전체에 LMW성분이 존재하여 반복적부착되면 별거지는 확률이 상대적으로 적으며, 초기에 부착된 오손물은 유기물의 경우 빠르게

생기아 남자 확률이 있지만 무기물의 경우 약한 발수성이 약한 빠르고와 빠른 동향에 대한 영향을 적은 것으로 사료된다. LMW성 분이 존재하는 한 표면의 오손이 쉽게 점점 진행되며, 자연상태에서 오랫동안 지나는 동안 LMW성분이 사라지게 된다. 대체로 초기상태에 부착된 오손물이 쉽게 세거지지 못하여 표면에 누적된 경우로 사료되며, 발수성은 오손된 경우도 LMW성분이 어느 기간 동안 지속적으로 발생하여 발수성은 유지이 Virgin에의 경우 오손의 경우라도 파괴장소가 크게 나타나는 원인으로 사료된다. 그러나 계속적으로 LMW가 누출되지 않으므로 서비스 후 어느 기간이 되면 발수성이 점차로 멈춰지게 되고 누설전류가 생성되어 점차 확산한 누설전류를 생성하게 된다.

4. 결론

참고문헌