Crescent-Shaped Input Type 원형압전변압기의 특성
정성수, 박태곤
창원대학교

A Study on the Characteristics of Circular Piezoelectric Transformer which has Crescent-Shaped Input Electrode
Seong-Su Jeong, Tae-Gone Park
Changwon National Univ.

Abstract: This paper presents a new disk-type piezoelectric transformer. The input side of the transformer has a crescent-shaped electrode and the output side has a focused poling direction. The piezoelectric transformers operated in each transformer’s resonance vibration mode. The electrodes and poling directions on commercially available piezoelectric ceramic disks were designed so that the planar or shear mode coupling factor \(k_{31} \) becomes effective rather than the transverse mode coupling factor \(k_{33} \).

Key Words: piezoelectric transformer, shear mode, planar mode, voltage step-up ratio

1. 서론

1907년 미국의 G.E.사의 C. A. Rosen이 압전세라믹을 이용하여 전압의 변화를 얻을 수 있는 압전변압기를 제안한 이래 1990년 이후 PZT의 압전세라믹이 개발되고 그에 대한 연구가 활발해짐에 따라 압전변압기에 적합한 세라믹스의 개발이 이루어지면서 최근에 그 연구가 다시 활발히 진행되고 있다.[1]

최근 소형화, 박형화, 경량화가 강하게 요구되는 정보통신 시스템에서는 전자(영적)식 변압기의 단점을 극복하기 위해 다양한 형태의 변압기가 제안되고 있다. 특히 압전변압기는 간단한 구조, 다양한 형태, 높은 변환 효율, 고주파 구동도의 특성이 있다. 이러한 특성에 의해 전자식 변압기로는 사용이 어려운 어려분야에서 활용되고 있으며, 특히 높은 승압특성을 이용하여 고전압을 요구하는 LCD Backlight용 CCFL(Cold Cathode Fluorescent Lamp)의 자기공명으로 활용되고 있다.[2]

압전변압기의 저출력 한계를 극복하기 위해 적층 또는 병렬구동의 방법과 압전변압기 자체의 형상과 전극 패턴을 변화시키는 방법이 연구되고 있다. 병렬구동과 적층의 경우 크기 및 제작과정이 복잡한 단점이 있어서 같은 크기에서 형상 변화로 인한 효율을 증가시키는 방법이 효과적이라고 할 수 있다.

본 연구에서는 기계적 출력이나 장시간 사용에 의한 열화상성으로 인한 파손을 줄이기 위해 Circular 형태로 Crescent형압전 변압기를 설계하였다. 유전요소와의 및 동보조건에서 Rosen형 압전변압기의 단점을 극복하기 위해 본 연구에서는 Crescent형 압전변압기를 직접 제작하여 동작성과 높은 승압율 및 높은 효율을 통한 CCFL의 적용을 검토하였다.
2.2 유한요소해석 및 실험

\([\mu m]\)단위의 미세한 진동을 ANSYS해석프로그램으로 확인할 수 있고, 또한 이 작업으로 얻는 진동주파수를 활용할 수 있다. 그림 3은 압전변압기의 측면주파수 응파에 따른 변형과 응력의 분포도를 수학적 계산에 의해 시뮬레이션한 것이다.

그림 3. Rosen형 압전변압기의 진동 및 응력분포

모든 직사각형의 압전변압기는 transverse mode coupling constant\((k_{ji})\)가 사용된다. 그러나 shear mode\((k_{ij})\)의 경우에는 \(k_{ij}\)보다 두배로 큰 값을 보인다. 따라서 본 논문에서 제안된 압전변압기에는 \(k_{ij}\)와 planar mode\((k_{ij})\)가 함께 적용되었다. 그리고 압전변압기의 구동주파수는 방사상의 공진주파수를 이용한다.

제안된 압전변압기는 그림 2에서와 같이 single layered 압전재료로서 crescent-shaped 입력전극과, elliptical shaped 출력전극으로 구성되어있다. 사이즈는 지름 \(26[mm]\), 두께 각각 \(1.5[mm], 2.0[mm], 2.5[mm], 3.0[mm], 3.5[mm], 4.0[mm]\)이다.

그림 4. 본감차지 및 제작된 압전변압기

그림 4는 본감차지와 제작된 압전변압기들을 보여준다. 세라믹의 보호와 원활한 분리화에 의해 약 100\(^{\circ}\)C정도의 실험온도내에서 \(1[mm]\)당 \(3[KV]\)정도의 전압으로 분격을 행하였다.

그림 5. 공진주파수와 주파수변환에 따른 전압특성

그림 5는 제작된 압전변압기의 임피던스를 측정한 스펙트럼과 주파수변환에 따른 전압특성을 보여준다. impedence analyzer로 측정한 결과는 각 모델마다 공진주파수의 차이가 있었지만 대략 80 kHz 주위에서 최소의 임피던스를 보였고, 전압의 증폭비도 공진주파수대에서 높은 승압율을 보임을 확인할 수 있다.

그림 6. 두계변화 및 공극 간격에 따른 승압특성

3. 결론

Circular형태의 압전변압기에 crescent형 입력부의 연속을 달리는 모델과 두께를 달리는 모델을 제작하여 각각의 승압율과 CCFL의 적용에 관하여 연구한 결과 유한요소해석을 통하여 입력부와 출력부의 접촉면이 해져 crescent형태의 압전변압기가 응력이 분산될 것을 보고, 실험을 통한 출력전력으로도 효율이 높음을 확인하였다. 두께에 따른 승압율은 두께가 없을수록 높은 승압율을 보었고, 1.5[mm]에서 약 80배에 가까운 승압율을 보였으나 얼마의 발전이 없었다.

제안된 공극간격에 따라 공극의 간격을 달리는 모델은 비교적 입력전압에 비해한 승압특성을 보였고, 공극의 간격이 낮을수록 높은 승압특성을 보였다. 높은 승압율을 얻기 위하여 공극의 간격을 넓게 하여도 아주 높은 분격 전압이 요구되므로 변압기의 피손의 우려가 크며, 실제로 10[mm]이상의 공극을 가진 압전변압기의 분극하는 동안 breakdown현상이 일어날 수 있음을 확인할 수 있었다.

항후 CCFL의 고유임피던스와 압전변압기의 출력임피던스의 계정과 관련전압의 안정성을 유지할 수 있는 기술 개발이 요구된다.

감사의료

이 논문은 2005년도 창원대학교 연구비에 의하여 연구된 것으로, 이에 감사드립니다.

참고 문헌