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Group Ordering Reference Priors for the Difference of
Intraclass Correlation Coefficients in Familial Data
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ABSTRACT

In this paper, we develp the group ordering referecne priors for the differecne of the
intraclass correlation coefficient in familial data. Using marginal posterior distributions
under those priors, we compare frequentist coverage probabilities.

1. Introduction

The intraclass correlation coeflicient p is frequently used to measure the
degree of intrafamily resemblance with respect to characteristics such as blood
pressure, cholesterol, weight, height, stature, lung capacity, and so forth. Sta-
tistical inference concerning p for a single sample problem based on a normal
distribution has been studied by several authors(Rao, 1973 ; Rosner and Don-
ner, 1977, 1979 ; Donner and Bull, 1983 ; Srivastava, 1984 ; Gokhale and Sen-
Gupta, 1986 ; Velu and Rao, 1990). Surprisingly, its extension to multisample
problems based on several multivariate normal distribution has recevied very
little attention.

There is a considerable study of a statistical inference for intraclass cor-
relation coefficient from familial data by several authors. However nothing
is known about approach of Bayesian inference except for Kim, Kang, and
Lee (2001). But none of the above authors considered any Bayesian inference
for unequal family sizes. In practice, we come across families with unequal
numbers of children and hence, this is a very important practical problem to
consider as a estimation for intraclass correlation coefficient under unequal
family sizes. In this thesis, we consider estimation problem for two intraclass
correlation coefficients based on two independent multinormal samples under
unequal family sizes.

The most frequently used noninformative prior is Jeffreys’s prior. But,
in spite of its success in one parameter, Jeffreys’s prior frequently runs into
serous difficulties in the presence of nuisance parameters. To overcome these
deficiencies of Jeffreys’s priors, Berger and Bernardo (1989, 1992) expounded
the reference prior approach of Bernardo (1979) for deriving noninformative
priors in multiparameter situations by dividing the parameters into parameters
of interest and nuisance parameters. This approach is very successful in various
practical problems. As an alternative, we use the method of Peers (1965) to
find priors which require the frequentist coverage probability of the posterior

1) Graduate, Department of Mathematics Hanyang University Seoul, 133-791, Korea

2) Assistant Professor, Department of Computer Science and Statistics, Chosun University, 501-759,
Gwangju, Korea

3) Professor, Department of Mathematics Hanyang University Seoul, 133-791, Korea

_53_



Group-Ordering Reference Priors for the Difference of Intraclass Correlation
Coefficients in Familial Data

region of a real-valued parametric function to match the nominal level with

a remainder of o(n‘%). These priors, as usually referred to as the first order
matching priors.

In the paper, we consider the problem of inferencing pi, p2 using noninfor-
mative priors in the following situation :
Suppose we have a sample of measurements from k;, k; families, and let X",
i=1,2,.--- , k and Y;.* ,j=12---, k; represent measurements from the

it* family and j** family, respectively , where

X* _ (X:l,.. X;;)l)/’ };j-u - ( j"i?"' , ]pz) where p;, ps, k1,k2 2 2.

The structure of the mean vector and the covariance matrix for the familial
data is given by Rao(1973) as

py = palp,, Xy = 02(1—p1)lpl+p1JP1’ B3 = polp,, X = 02(1—p2)1m+p2‘]p2
where 1, is a p; X 1 vector of 1's and 1, is a pp X 1 vector of 1’s, p3(—o0 <

p1 < o) and pg(—o00 < pg < oo) are the common mean of X,Y)", respec-

tively, %(o? > 0) is the common variance of members of the family, and p;, p2
called the intraclass correlation coefficient, which are the coefficient of cor-

1
T
p1—1 p2—1
pa2 < 1, respectively. It is assumed that X ~ N, (u],27),i = 1,2 ki1,
Y;.* ~ Np,(u3,%3),7 = 1,2,-+- ,ka where N, represents a p-variate normal

distribution.

In Section 2, we treat the reparametrization (p1, p2, 02, 11, pi2) to
(61, 02,03,04,05). In Section 3, we derive, using this transformation, group or-
dering reference priors when 17, = 6; — 6, is the parameter of interest. The
sufficient condition for propriety of posterior distributions and marginal pos-
terior densities for 7; under these priors are given in Section 4.

2. Fisher Information Matrices

Let Xi = (Xih et ’Lpl) Qp1Xp1 Y7 = (}/jlv e ’}/jpz)l = QPzXPQ}/;'*
where @) is a Helmert orthogonal matrlx Under the orthogonal transfor-
mation (1.2), it is obvious that X; ~ Np (p1,%1),¢ = 1,2,-+- ,k,Y; ~
Np,(p2,22),5 = 1,2, , kg, where

= (VP1p1,0,-+-,0), By = 0®Diag[1+ (p1 — Dp1, 1= p1, -+, 1= py]
(\/]7—2/.142, o ) 22 - 02Dzag[1 + (p2 - 1))027 1- P2 ) 1- P2]
Then the likelihood function of (p1, 2, 02, i1, tz) is U(p1, p2, 0%, 1, p2 | &, y) =

— o (1 (= D)™ F (1) PR (L (pa = 1)pn) T E (1
(2m)

_ (pa—1)k2
2) 2

1 by (@a-vEieD? | P12 _1 k2 (vj1=VPau2)? P2
Xe‘m[zﬁl( 1t+(p1—l)p1 T 1-p) m—"-’z'-f")]e m[ ( 1+(p2-1)pz +1—p22 ‘Zym)
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Lemma 2.1 (Original Parametrization) The Fisher information matrix of
(p1, p2, 0%, 11, pi2) is given by

A0 F 0 0
0 B G 0 0
II(PI,P%UZ,III»#Z) = FGEO0O (21)
0 0 0 C O
0 0 0 0 D
where
4 = kip1(p1—1)(1+(p1-1)p3) _ k2p2(pa—1)(1+(p2~1)p3) C = pik;
2(1=-p1)2(1+(p1-1)p1)? 2(1-p2)2(1+(p2-1)p2)? ? a2(1+(p1-1)p1)?
—_poky
70 e i et
E = kpitks 2,F — piki(p1—1)p1 G = p2ka(p2—1)p2

204 T 20%(1-p2) (1 (p2-D)pa)”

T 202(1-p1)) (1+(p1-1);1)’

Consider the following transform from (py, p2, 0%, 11, p12) to (61, 62,63, 64, 65)
where

- -
pr="01, pp=8;, , o= (1—91)_(p e [1-*-(111—1)(91]‘%(1—92)‘—2—zp 7 [1+

(p2 — 1)92]%93,111 = 04,and g = 05 where k = kip; + kop; .

Lemma 2.2 (Reparametrization) The Fisher information matrix for
(61,02, 83,04, 05) is

Iy I1n 0 0 0
Iy Io 0 0 O
I(01,62,05,6,05)=| 0 0 Iz 0 o (2.2)
0 0 0 I4 O
0 0 0 0 Ig
wherek (p1-1)[k+k1p1(p1~1)6%] k1paka( I )616:
_ kipi(p1— p1(p1— _ _ —1){(p2-1
In = 2 mprm e D2 = In = — s e T e
I __ kapa(p2—1)[k+kopa(p2—1)62) Jan = £ :
T 2k(1-02)%[1+(p2—1)65] 133 T 293 »

Ly = B (1= 00) T 1+ (py ~ 163211~ 6) 722 (1 + (py — 1)65) %,
(pr=1)k k (p2=1)ky k
Iss = 2222 (1 — 61) " F (1 + (py — DOF (1= 6p) " F *[1+ (p2 — 1)6o] 7.

3. Group Ordering Priors

In this section, we provide, using (2.2), group ordering reference priors for
(71,72, M3, M4, 15) with 7y = 6y — 65, parameter of interest, and let 7, = 65, N3 =

03,14 = 04,75 = Os.
From Berger and Bernardo (1989), we have group ordering reference priors
for (6y, 02,03, 64,05) when (6;,0,) is the parameter of interest.

Let P4(m) = (1=mm—m) F (1=ma) F 14+ (p1 = 1) (m+2)] 2 (14 (po— )] Fma 3
X[Z(nh 772)]_2ﬁB(771: 7]2)
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Theorem 3.1 The group ordering reference priors for (m, 72,73, 74,75) are
given as follows :

1) Wit;hb1=b2=b3=b4=b6=0,andb5=—4
i () o< Py(m)when({m, n2}, {ms, 74, m5)
2) Withb1=b2=b3=b4=b6=0,andb5=—2

i (m) o Py(m)when({m, n2, 13}, {ma,75})
3) With bl = bz = 0,b3 = b4 = —1,b5 =-2 y and bs =2

78 (n) o Py(m)when({n1, n 1,75}, {ms})
4) With b1 = b2 = b4 = 0,b3 = —1,b5 =-3 y and bs =1

7@ (1) o< Pi(n)ywhen({m, 12,73, 1}, {7})
5) With bl = b2 = b3 = 0,b4 = —1,b5 =-3 , and bs =1

i (1) o< Pu(m)when({m, 2,75}, {05, 04})
6) With b1 =b2 =b4 = 0,b3 = —l,bs = -3 s and bs =1

29 () = 78 (mywhen({m, 12, 74}, {n, 75})
7) With b1 = b2 = b3 = 0,b4 = —1,b5 = -3 , and b6 =1

72(n) = =\ (m)when({n, 72, 13, 75}, {74})-

4. Marginal Posterior Disributions

Let Po(m|z,y) = f;;__l[l +(pr = 1) +m)] T 1+ (o2 — Do) F [Z(m, )] 7
%[, mo)) 2 [Z1(m, 72) Ca(, 72)) 7 B, 12) .

According to Bayes theorem and compute, the marginal posterior distribu-
tions of 7, are given following :
1)

1) Withe; =cp=1,c3=c5 =0, and ¢s = -2, 73’ « Py(mlz, y)

2) Withey =cp=cs5=1,c3=0,and ¢y = -2, Wg) x Po(ml|z,y)

3) Withey =co=c3=c4=0,and cs =2, wg) < Po(mlx, y)
4) With¢; = ¢4 =0,c0=c5 =1, and ¢3 = —1, wg) x Pa(m|z, y)

5) Withe; =cs=1,co=c4=0,and c3 = -1, WS) x Po(m|z,y)
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6) WithCI=C4=0,02=(:5:]_,andc3—_1 7T(4)— 5{)

7) Withc; =cs =1,c0=c4 =0, and c3 = ~1, 7r(5) g) ,
where

B(m,m2) = [kip1[1 + (p2 — )] + kapa[l + (01 — 1)77%]%
X[1+ (p1 = D(m +m)] 7 {1+ (p2 — o] M1 —m —m2) 7M1 = nz)‘1

Ci(m,m) = [(1 —m)[1+ (p1 = 1)(m +m)l[1+ (p2 — D] 2, X0, 22,
—(1=m =) =m)1+ (P2 — L)ne]k~ I(Zz 1 Zi)?

+1 == m)(1 = m)[1+ (p2 — Dma] iy 2

+(1—-m - 2)[1 + (p1 — D)(m + m)][1 + (p2 — 1)m2] 2511 2 Ui

~(1=m = m)(1 =)L+ (pr — 1)(m + m)lke (72 yn)?

+HL=m = m) (L= L+ = D )] D AR

Z(m,ma) = (1= m — m2) PFE L+ (pr — 1) + 7)) F (L —m2)

x[1+ (p2 — 1)) %,

Zy(m,72) = Z(m, 12){ (L=m = m2) [1+(pr— 1) (m+m2)| (L —m2) [+ (2 = 1)a] }

The following theorem can be proved by some manipulation.

Theorem 4.1 All the posterior distributions under group ordering reference
priors are proper.
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