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Computation of Blocking Probability in a Loss System!
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Abstract

A loss system where two types of customers arrive in accordance with two independent
Poisson processes is considered. An efficient recursive formula is developed for calculating the
loss probability when the number of servers is large. Some practical examples regarding the
performance evaluation of telecommunications networks are discussed.
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1. Introduction

Practical examples concerning loss systems arise in many areas, such as computer and telecommu-
nications networks, resource managements, machine repairing problems, and so on. Among others,
Kelly (1991) considered a loss network where customers of distinct classes occupy different number
of servers during the service period. Kelly’s loss systems can be useful analytical models in the
performance analysis of diverse telecommunication networks supporting multi-class services, such as
voice, low-speed data and high-speed data services, since actual systems are equipped with limited
resources and distinct service may request different amount of resources. Koo, Yang and Kim (2000)
analyzed the capacity of some multi-media system by calculating loss probabilities for the system
considered by Kelly. Other studies of telecommunications networks formulated as such loss systems
can be found in Lee, Na, Choi and Lim (2002) and Koo, Yang, Ahmad and Kim (2002).

The steady-state distribution for this multi-class loss system is well established under the usual
Markovian assumption of Poisson arrivals and exponential service times. See, for example, Kelly
(1991) and Ross (1995). However, actual computation of blocking probability needs additional
computational algorithm especially when the number of total servers in the system is large. Note
that Erlang’s loss formula for M/M/c/c system and its recursive version serve as a good example
(cf. Medhi, 2003). In this paper we focus on the blocking probability that an arriving customer
cannot receive the service and the corresponding efficient computation algorithm.

In section 2, the loss system is specified and an efficient computation algorithm for the blocking
probability is presented. Section 3 gives practical applications of the algorithm. Some quantities
to approximate the blocking probability are also provided. The numerical method developed in
section 2 is shown to be a powerful tool for the performance evaluation and the resource dimensioning
of network systems.

2. Blocking probability and recursive formula

Consider a queueing system with kc servers where distinct customers of two types arrive. The
customers of Type I and Type II arrive at the system in accordance with two independent Poisson
processes with rate A; and A2, respectively. Each customer of Type I occupies only one server during
the service time that is exponentially distributed with mean pl"l. On the contrary, the customer of
Type II uses k servers simultaneously during the period exponentially distributed with mean p; 1
All service times are assumed to be mutually independent. Let p; = A;/pi, ¢ = 1,2 denote the traffic
intensity or offered load to the system of Type i. The system considered is a loss system in that any
arriving customer finding fewer idle servers in the system than it requires is blocked and leaves the
system without being served. Thus, a customer of Type I is lost to the system if on arrival it finds
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all the servers busy, whereas an arriving customer of Type II is blocked without service when there
are idle servers fewer than k.

We now derive the steady-state distribution for the numbers of customers being served by
applying a simple truncation method to a two-dimensional time-reversible Markov chain. Let
N;(t),i = 1,2 be the number of the customers of Type ¢ being served in the system at time .
Then, (Ny(t), N2(t)) is a two-dimensional continuous-time Markov chain with state space

S = {(n1,n2) € Z%;my + kny < ke,

where Z, is the set of nonnegative integers. It is easy to see that this chain is the truncated version of
a two-dimensional Markov chain (N, (t), No(t)), where N;(t) and Na(t) denote the numbers of busy
servers of two independent M/M/kc/kc and M/M/c/c loss systems with traffic intensities p; and
p2 , respectively. Note that since N, (t) and N,(t) are birth-and-death processes and time-reversible
in steady-state, the two-dimensional (V) (t), Na(t)) is also time-reversible. Then by Kelly (1979),
the truncated (V1 (t), N2(t)) is time-reversible and its steady-state distribution is just the stationary
distribution of (N (t), No(t)) truncated to S.

Let (N, N2) and (Ny, V) denote (Ni(t), N2(t)) and (N1 (t), N2(2)) in steady state, respectively.
Then, we have

p(ni,ne) = P(Ny=mny,N; =ny)
= P(Ny=n1, Ny =no|(N1,N2) €85), (n1,n2)€S. (1)
We define .
(mrp) =2 521, n=0,1,...,r @)
p !7p—n! 0]' ) =0,1,...,m
J=

Note that {p(n;r,p),n=0,1,...,7} is the stationary probability for the number of busy servers of
M/M/r/r loss system with traffic intensity p. From (1) and (2),

p(ny,n2) = p(ny; ke, p1)p(ne; ¢, p2)/ps, (3)

where o
ps=P((Ny,No) € S)= >~ plni;ke,pr)p(na;c, p2)
(n1,n2)€S

is the normalizing constant.
Since the arrival streams are Poisson processes, it is an easy task to find explicit forms of the

blocking probabilities. First, define two sets of states in S
By = {(n1,n2);n1 + kng = ke} C S

and
By = {(n1,n2); (k= 1)c+ 1 < ny + kny < ke} C S.

Then, the blocking probability that an arriving customer of Type I cannot receive the service is

Li= S png,n) 4)

(n1,n2)€B)1

and the blocking probability corresponding to Type II is given by

Ly= Y. pn,na), ()

(n1,n3)€B2

which come from the PASTA property(cf. Wolff, 1989).
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Even though the explicit equations (3), (4) and (5) may be thought to be simple, the actual
computation of (4) and (5) is not so easy when the number of servers, kc, becomes large. This
difficulty arises mainly from the calculation of (2) for large n and r. Although a useful recursive
algorithm to compute blocking probability is presented in Ross (1995), it seems that the algorithm
there would confront the same numerical problem as the direct calculation of Erlang’s loss formula
if the number of servers is very large. Hence, we should devise another reliable method for the
computation.

If n < r, then from (2)

r—1 4
ol [ Ry
plnir,p)™" = (]Z:O i it
= p(nir —1,p)7  +p(rir, p)p(ni 1, p) -
Thus, we have
p(n;m, p) = p(nir — 1,p)[1 = p(r; 1y p))- (6)
For n = r, we use the well-known recursive formula
p(r;r,p) = pp(r — ;7 — L, p)[r + pp(r - ;7 = L, p)] . M
with the convention p(0;0, p) = 1. Simple iteration based on (6) and (7) gives exact numerical values
of p(0;0, p); p(1;1,p), p(0; 1, p); P(2;2,p), P(1;2, p), P(0;2,p); ... ; P(rs7,p)s - , P(0;T,p) for any
large r. Using these values for r = ke, p = p; and for r = ¢, p = p3, one can compute (4) and (5) by
[+ Cc
Ly =) p(k(c—mn2),n2) = pg* Y plk(c — n2)ike, p1)p(naic, pa) (8)
n2=0 np=0
and
c—1 k(e—-nz)
L, = Z Z p(n1,n2) + p(0,c¢)
n2=0 ny=k(c—1—na)}+1
c-1 k(c—nz)
= ps'{), > plniske, p1)p(nz;c, p2) + p(0;ke, p1)p(c; c, p2)}, (9
n2=0 ny=k(c—1~nz)+1
where

c k(c—ng)
Ps=), Y plns;ke,p)p(naic, pa)-
na=0 n;=0
Note that the numerical computation of (8) and (9) spends memory of O(kc) and time of O(k?¢?),
where for example, the symbol O(kt) means that the quantity is bounded by a constant multiplica-
tion of k¢ as ke increases to infinity.

3. Application and the numerical study

We now introduce approximating quantities for the blocking probabilities (4) and (5). First,
the system considered here can be approximately regarded as M/M/ke/ke (or M/M/c/c) loss sys-
tem from the viewpoint of the customer of Type I (Type II). Thus, the values in (4) and (5) are
approximated respectively by

Ll,app = p(kc; ke, py + kp,) (10)

and
L2,app = p(C; ¢, p2+ Pl/k), (11)
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where some modifications of the offered loads are made. Note that this approximation is not so
elaborate but can serve as a simple substitute. Furthermore, by comparing the values from (10)
and (11) with ones from (8) and (9), we may draw some meaningful conclusions on the performance
characteristics of the loss system with multiple types of customers relatively to the system with
single type. .

The computation procedure discussed so far makes possible the accurate and rapid analysis of
large capacity loss systems with multiple types of inputs. Practical examples can arise in telecom-
munications networks, where the performance evaluation and the resource dimensioning are of main
concern.

1. Performance evaluation The evaluation of performance measures, such as blocking probability
and mean number of busy servers, is the most elementary step in performance analysis. Above
all, the evaluation of blocking probability is of primary concern in loss systems. In our case, two
types of blocking probabilities are determined by (8) and (9), or approximately by (10) and (11)
for any given system parameters. For example, if system parameters are given by & = 2, ¢ = 200,
p1 = 266 and pa = 57, then we obtain L; = 0.0142538, L, = 0.0290861, L, .pp = 0.0139316 and
Lo app = 0.0279682. If k = 5, ¢ = 200, p1 = 485 and ps = 97, then L; = 0.0086591, L, = 0.0442019,
Ly,app = 0.00952919 and Ly ,pp = 0.0376642. Besides, the mean number of busy servers, that is
E(N1 +kNz), is easily calculated using (3) and the recursive formulas (6) and (7), which numerically
determines the realistic utilization factor or server utilization of the loss system.

2. Number of servers for QoS requirement  Another important application can be found in the
design of telecommunications system, where the necessary capacity of the system should be decided
to satisfy the QoS(Quality of Service) criterion. Consider a telecommunications system supporting
two types of real-time services such as voice and data. This system is assumed to be modelled
as the loss system discussed in this paper. Suppose that some system parameters are prescribed
beforehand. For example, the resources allocated to a data service k = 3, the offered server utilization
u = (p1 + kp2)/(ke) = 95%, the proportion of voice traffic 8 = p1/(p1 + kp2) = 70%. The QoS
criterion is given as pireq = 1% and p2req = 2%, which means that the system should have plenty
of resources (or servers) so that L; < pireq and Ly < p2req. The problem is to find the number
c satisfying the requirements under the prescribed conditions. This can be done by tabulating the
blocking probabilities for varying values of c. The blocking probabilities under the above conditions
computed by (8), (9), (10) and (11) are contained in Table 1. It is easily seen that ¢ should be lie
between 270 and 280 for the given level of QoS. In fact, the exact value is ¢ = 273 and therefore,
the system should be equipped with at least 819 servers to guarantee the desired QoS with the
prescribed server utilization.

Table 1. Blocking probabilities under k = 3,u = 95%, 8 = 70%
Lec 1 L, Lo Ly,app La,app

150 | 0.0126531  0.0392119 0.0121237 0.0357016
160 | 0.0118548  0.0367373 0.0111983 0.0338596
170 | 0.0111345  0.0345044 0.0103702 0.0321867
180 | 0.0104811  0.0324790 0.0096252 0.0306594
190 | 0.0098856 0.0306331  0.0089521 0.0292585

270 | 0.0065259  0.0202206 0.0052903 0.0211414
280 | 0.0062266 0.0192930 0.0049787 0.0203947
200 | 0.0059460  0.0184236 0.0046895 0.0196900
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3. Calculation of admissible utilization factor We now consider another inverse problem in a
slightly different direction. We assume that the parameters k = 5, ¢ = 300, 8 = 60% are given
beforehand. The problem is to search for the admissible utilization factor u or equivalently, the
overall offered load p, + kp; under the QoS requirement p; ;eq and p2req. Say, for example, py req =
1% and p3 req = 3%. Blocking probabilities are tabulated in Table 2 as the utilization factor varies
from 99% to 96%. From Table 2, we conclude that the utilization factor must be controlled to be
less than approximately 96.5% in our setting. Thus, the system should not admit the overall offered
load more than 1447.5.

Table 2. Blocking probabilities under & = 5, ¢ = 300, 3 = 60%
r u Ly L, Ll,app L216PP

0.99 | 0.0102690  0.0517575 0.0145247 0.0388326
0.985 | 0.0091898 0.0464983 0.0119619 0.0360223
0.98 | 0.0081672  0.0414859 0.0096526 0.0332961
0.975 | 0.0072045  0.0367395 0.0076141 0.0306598
0.97 | 0.0063046  0.0322773 0.0058566 0.0281195
0.965 | 0.0054700 0.0281153 0.0043815 0.0256805
0.96 | 0.0047025  0.0242667 0.0031803 0.0233484
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