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Abstract

An identification and characterization of susceptibility genes for common
complex multifactorial diseases is a challengeable task, in which the effect of
single genetic variation will be likely dependent on other genetic variations
(gene-gene interaction) and environmental factors (gene-environment interaction).
To address this issue, the multifactor dimensionality reduction (MDR) has been
proposed and implemented by Ritchie et al. (2001), Moore et al. (2002), Hahn et al.
(2003) and Ritchie et al. (2003). With MDR, multilocus genotypes effectively
reduce the dimension of genotype predictors from n to one, which improves
the identification of polymorphism combinations associated with disease risk.
However, MDR cannot handle missing observations appropriately, in which
missing observation is treated as an additional genotype category. This
approach may suffer from a sparseness problem since when high-order
interactions are considered, an additional missing category would make the
contingency table cells more sparse. We propose a new MDR approach with
minimum loss of sample sizes by considering missing data over all possible
multifactor classes. We evaluate the proposed MDR by using the prediction
errors and cross validation consistency.

Keyword : Multifactor-Dimensionality Reduction (MDR), Gene-Gene Interactions,
Case-Control study.

1. Introduction.

In human genetics, one of the challenging problems is to identify and
characterize the susceptibility genes for common, complex multifactorial human
diseases, in which the effect of any single genetic variation will be likely dependent on
other genetic  variations (gene-gene  interaction) and  environmental factors
(gene-environment interaction). To address this issue, gene-gene interactions in complex
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diseases have been examined by a logistic regression model, multilocus linkage
disequilibrium tests and the Hardy-Weinberg equilibrium test. However, all of those
methods have limitations in their general applications (Moore et al. 2002). For instance,
logistic regression is less practical for dealing with high—dimensional data because there are
many contingency table cells that contain the sparse or missing observations when
high-order interactions are modeled (Ritchie et al. 2001). This can lead to very large
coefficient estimates and standard errors (Hosmer and Lemeshow 2000). One solution to this
problem is to collect very large number of samples to allow robust estimation of interaction
effects; however, the magnitudes of the samples that are often required incur prohibitive
expense (Ritchie et al. 2001).

One alternative method for detecting high-order gene-gene interactions is a
multifactor-dimensionality reduction (MDR) method (Ritchie et al. 2001), which was inspired
by the combinatorial-partitioning method (CPM) that examines multiple genes, each
containing multiple variable loci, to identify partitions of multilocus genotypes that predict
inter-individual variation in quantitative trait levels (Nelson et al. 2001). The MDR method
is for detecting and characterizing high-order gene-gene and gene-environment interactions
in case-control and discordant-sib-pair studies with relatively small samples (Ritchie et al.
2001). With MDR, multilocus genotypes are pooled into high-risk and low-risk groups,
effectively reducing the genotype predictors from n dimensions to one dimension (Ritchie et
al. 2001). This method is model-free, in that it does not assume any particular genetic
model, and is nonparametric, in that it does not estimate any parameters (Ritchie et al
2001).

However, when high-order interactions are considered with relatively small sample,
there may be many multifactor cells with either missing data or singleton data (Ritchie et
al. 2001), which yields to serious loss of data. To reduce the loss of data, we
propose a new improved MDR method. The main idea of the new MDR is to make
use of all of available data for any pair of SNPs. This method makes more
observations be included in the analysis, while only complete observations are included
for the original MDR. In other words, the new MDR method considers all available
observations, while the original MDR method uses non-missing observations in entire
dataset. Like the original MDR method, this new MDR method is also model-free and
non-parametric. With the new MDR, a loss of information can be avoided. We compare
the new MDR with the original MDR using the prediction accuracy and cross-validation
accuracy.

In section 2, the original MDR is described and the new MDR is proposed in section
3. A short discussion is given in section 4.

2. The Original MDR method

As illustrated in Figure 1, the MDR method is implemented through six steps
using 10-fold cross-validation. We denote N to be the number of total instances, AP the

number of non-missing instances in the entire dataset, and S, the family of possible
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SNPs of all SNPs

(1 <c < total number of SNPs). In step
1, the data are partitioned equally for
cross-validation. In this case, dataset is
partitioned into 10 equal parts, allowing 9/10
of the data to be used for the training set
while 1/10 of the data is used for the test o
set. Here, N(,, is the number of cases and m, oy Hete b
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N, is the number of controls in the
complete training set. In step 2, an element
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S, is selected from S, if corder

interactions of SNPs are considered. In step Fig.l. Summary of the general steps involved in
implementing the MDR method Bars represent
i hypothetical distributions of cases(left) and
for both of cases and controls according to controls(right) with each multifactor combination.

each three genotypes of SNPs in the Se Dark-shaded cells represent high-risk genotype
combinations  while light-shaded cells represent

For example, when c=2 and sc={SNP L low-risk genotype combinations. No shading or

3, we tabulate dimensional frequency table

white cells represent genotype combinations for

denote 7Y% % 4 be the
SNP2), we Wi, case and et which no data was observed.(Hahn et al. 2003)

number of cases and controls, respectively,
with the #th genotypes of SNP1 and sth genotypes of SNP2 in the complete dataset. In
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step 4, the ratio nm; , is calculated within each cell. Then each cell is labeled as
Nee
high-risk if the ratio is equal or greater than the threshold, N, , and low-risk if
n?{ case Ne case

R, el NZ,, . The concept of this method is that the proportion of case is larger than

control in each high-risk cell and smaller in each low-risk cell. That is,

4 (
_UJM >] o s N -
ny, ctl/ Ny n ‘:'i, ctl N high-risk

0
l[, case/N case < 1 @ n lz. case < Ncase @
0 0 e
ni, 1%, cul N, ctl e il low-risk

If the dataset is balanced, the threshold is equal to 1. In step 5, ratio of correct
misclassifications to the total number of instances classified within the training set for
each set S, training accuracy (l-training error), is evaluated and a set S, with maximizing
training accuracy is selected. In step 6, the prediction accuracy (1-prediction error), which
is the ratio of correct classifications to the total number of instances classified within the
testing set, is calculated for the single model selected in step 5. Step 1 through 6 is
repeated 10 times with 10-fold cross-validation. Single best model is also selected from
-order combinations. Among this set of best multifactor models, the combination that
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maximize both the prediction accuracy and CV consistency is selected.

3. The New MDR method

In step 1 of Figure 1, the entire data set, not complete data, is partitioned
into 10 equal parts for the 10-fold cross-validation. In step 2, an element s, is selected
from S, and we consider complete training data only containing SNPs in the selected set
S. We denote N° be the number of non-missing instances in this data. Then, N° is

larger than or equal to JN° , which means more cases are used for the MDR. In step 3,
when ¢=9 and $~{SNP1, SNP2}, we also denote #j; s be the number of cases with the

#h genotypes of SNP1 and #gth genotypes of SNP2 in the complete dataset and nf;.d, the
number of controls, respectively. In step 4, the new class is determined by the ratio of the
proportion of cases to the proportion of controls. That is,

s S
zz, case/Ncase 21 o n i, case > Ncase PN
s s . .
ni, ctl/ N ctl R, et N ctl high-risk
s
tz, case/ (1 & n’ i, case ( —case. Ncase =
s .
i, ctl/ N ctl R, ent ctl low-risk

The steps 5 and 6 are implemented by the same way of the original MDR.

The difference between original and new MDR is how to eliminate missing cases.
The complete dataset is fixed irrespective of any combination of SNPs for the
cross-validation in the original MDR, while the new MDR defines the complete dataset by

the selection of s, among all possible combinations. Therefore, while the value of
threshold ratio is identical for each s, in the original MDR, the new MDR» has different
value of threshold ratio for each s, depending on the selection of SNPs. In general, the
different value of threshold ratio is used for each s, because the distribution of case is

different from that of control in each s. The new MDR would be more efficient than the
original MDR, when high-order interactions are considered, in terms of the prediction error

and the cross validation accuracy.

4. Discussion

Ritchie et al. (2001) described the primary advantage of MDR; it facilitates the
simultaneous detection and characterization of multiple genetic loci associated with a
discrete clinical endpoint. This is accomplished by pooling genotypes from multiple loci into
high-risk and low-risk groups, depending on whether they are more common in affected or
in unaffected subjects. Another advantage is that it is a non-parametric approach, which
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avoids the problems associated with the use of parametric statistics to model high-order
interactions. A third advantage is that it assumes no particular genetic model; that is, no
mode of inheritance needs to be specified. This is important for diseases, such as sporadic
breast cancer, in which the mode of inheritance is unknown and likely very complex. The
fourth advantage is that false-positive results due to multiple testing are minimized. This
is primarily due to the cross-validation strategy used to select optimal models.

On the other hand, it is also pointed out that there are some disadvantages
by Ritchie et al. (2001). One important disadvantage is ability of MDR to make
predictions for independent data sets when the dimensionality of the best model is
relatively high and the sample is relatively small. High dimensionality and a small
sample lead to many multifactor cells with either missing data or singleton data and it
is a problem for estimation of the prediction error. However, a suggestion to solve
these problems occurred by missing data is to use larger data set that is complete
data set in each s, rather than considering all possible missing data over a whole set of
SNPs.

Alternatively, imputation of missing observations may be made by using KNN,
SVD, EM algorithm or BPCA. However, these methods cannot be applied under the
specific  structure of the data such as haplotype block. Instead, linkage
disequilibrium-based imputation and haplotype-based imputation methods may be
applicable for estimating missing values of the data based on the specificity of SNP
genotype data (Park et al.) Finally, investigating the relationship between the
MDR method and the log-linear model is expected to be a promising approach for
gene-gene interactions since the log-linear model is easy to handle and interpret.
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